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Abstract

This paper develops a revealed-preference model of information disclosure. A sender

ranks information structures (Blackwell experiments) knowing that a receiver uses the

information to select an action affecting them both. The two decision makers may

differ in their utility functions and/or prior beliefs, yielding a model of dynamic incon-

sistency when the sender and receiver represent the same individual at two points in

time. I take as primitive, for each menu of acts, (i) a preference ordering over all Black-

well experiments (the sender’s preference for information), and (ii) a correspondence

indicating the receiver’s signal-contingent choices from the menu. I derive axiomatic

representation theorems characterizing the sender as a sophisticated planner and the

receiver as a Bayesian information processor, and show that all parameters can be

uniquely identified from the sender’s preferences for information. I also establish a

series of results characterizing common priors, common utility functions, and intuitive

measures of disagreement for these parameters—all in terms of the sender’s preferences

for information.
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1 Introduction

People regularly choose among different sources of information. For example, they choose

which newspapers to read, web sites to browse, or experts to consult. A distinguishing

feature of information is that its value to a standard rational agent is purely instrumental: it

is valued only to the extent that it improves choice among risky alternatives. Consequently,

the value of information depends on many variables, including the set of feasible alternatives

and the utilities and prior beliefs of the individual. How does a decision maker’s value of

information vary with these parameters, and what can be inferred from his preference for

information?

I approach these questions from a revealed-preference perspective by formulating a model

of information disclosure with two decision makers: a sender (DM1) and receiver (DM2). The

sender ranks information structures knowing the receiver uses the information to choose a

risky alternative from some set. I assume the receiver’s signal-contingent choices are observ-

able. A key feature of the model, however, is that the sender’s preference for information—

not his ranking of acts or menus—is an observable primitive. This captures the idea that

the sender can control the information available to the receiver, but not the set of actions.

Thus, information is more valuable to the sender when, on average, it guides the receiver

toward actions that are more attractive to the sender.

Both the sender and receiver are expected utility maximizers. However, they may differ

in their utility functions or prior beliefs. This enables two interpretations of the model. In

the persuasion interpretation, the sender and receiver represent distinct individuals. Hence,

the framework provides a decision-theoretic foundation for “Bayesian persuasion” models

(Kamenica and Gentzkow, 2011). In the behavioral interpretation, the sender and receiver

represent the same individual at two points in time, yielding a model of dynamically in-

consistent behavior. As is well-known, sophisticated, dynamically inconsistent individuals

value commitment power.1 Here the sender lacks hard commitment power in that he cannot

restrict the set of actions available to the receiver. Instead, he commits to revealing the

signal generated by the chosen information structure. Hence, informational choice offers an

alternative form of commitment power, and preferences for information reflect preferences

for commitment.

To illustrate the main ideas, as well as the behavioral interpretation, consider an indi-

vidual who must decide whether to consume a particular dessert (action D) or not (action

¬D). The dessert contains an ingredient that is either unhealthy (state G) or very unhealthy

(state B). In period 1, before the decision is to be made, the individual is health-conscious:

1See, for example, Strotz (1955).
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¬D 1 1

(b) Utilities u

he prefers not to consume the dessert regardless of the state of the world (preferences v

above). He recognizes, however, that he may succumb to temptation when confronted with

the choice: his future-self prefers to consume the dessert in state G but to refrain in state B

(preferences u).

Lacking hard commitment power, the period-1 individual (DM1) attempts to influence

future choice through careful exposure to information. For example, he may consult a

specialist who correctly reveals the true state, or browse web sites containing imperfect

information about the state. If he acquires sufficient evidence of state B, his period-2 self

(DM2) will refrain from consuming the dessert despite the lack of hard commitment power.

Differences between first- and second-period utility functions induce non-trivial prefer-

ences for information. If, for example, both selves assign prior probability 2/3 to state G,

then DM1 prefers perfect information over no information: perfect information results in

choice ¬D with probability 1/3, while no information results in choice D with probability

1. However, perfect information is not ideal for DM1. Consider the following information

structure (denoted σ):

s t

G 1/4 3/4

B 1 0

This information structure generates signal s in state B, while in state G it generates s

with probability 1/4 and t with probability 3/4. Under Bayesian updating, DM2 chooses D

at signal t and ¬D at s. Thus, DM1 achieves a higher expected payoff from σ than from

perfect information, so that his preference for information violates the Blackwell (1951, 1953)

information ordering. In a similar fashion, non-common priors also lead to violations of the

Blackwell ordering.2 A key finding of this paper is that such violations are very informative

and that, in fact, the sender’s preferences for information fully reveal the priors and utilities

of both decision makers.

2Heterogeneous priors can be interpreted as a different source of temptation. In this example, both
decision makers could hold utility function u while the second-period prior is skewed in favor of state G.
Thus, the effect of temptation is to become biased or delusional in favor of state G, making the dessert seem
more attractive. The decision maker knows himself well enough to anticipate his behavior in such choice
environments.
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In the representation, the receiver selects among acts (Anscombe and Aumann, 1963):

profiles f = (fω)ω∈Ω assigning lotteries fω ∈ ∆X to states of the world ω ∈ Ω, where X and

Ω are finite sets of outcomes and states, respectively. Information structures take the form of

Blackwell experiments associating probability distributions over a set of signals to different

states of the world. As illustrated above, a Blackwell experiment is a matrix σ where each

column represents a signal and each row ω (one for each state) is a probability distribution

over the signals.

The receiver is characterized by a family of signal-contingent choice correspondences cs.

A signal is a profile s = (sω)ω∈Ω of entries from [0, 1] (not all zero). In other words, s

coincides with a column from some experiment and the entries of s represent likelihoods of

the signal being generated in different states of the world. For a signal s and menu A (a

finite set of acts), cs(A) ⊆ A is the set of acts chosen by the receiver after observing s.

The sender is characterized by a family of preference relations %A indexed by menus A.

Each %A is an ordering of the set of all Blackwell experiments and represents the sender’s

preference for information when the set of alternatives is A. The statement σ %A σ′ means

the sender expects (on average) higher payoffs from σ than σ′, given that his outcome is

determined by the receiver’s signal-contingent choices from A.

The representation theorem is divided into two parts: one for the sender (Theorem 1)

and one for the receiver (Theorem 2). For the receiver, the goal is to rationalize choices

cs as expected utility maximization under some utility index u, prior µ (full support), and

Bayesian updating. The rich space of signals employed here admits a novel characterization

of such behavior. The key axiom, Bayesian Independence, expresses an equivalence between

scaling utilities and scaling signal likelihoods. Combined with a new continuity axiom and

other standard axioms, this characterizes the receiver as a Bayesian information processor

(and expected utility maximizer).

For the sender, each relation %A is represented by expected utility maximization under

prior ν, utility index v, and correct forecasting of the receiver’s choices. Let f s(A) denote

the act chosen from A by the receiver when signal s ∈ σ realizes.3 The sender assigns utility

V A(σ) =
∑
ω

νω
∑
s∈σ

sωv(f sω(A)) (1)

to σ, where νω is the sender’s prior probability of state ω and v : X → R is his utility index.4

This is analogous to an indirect utility function for the sender in Bayesian Persuasion models

3The statement ‘s ∈ σ’ means s is a column of σ (sω is the column’s entry for row ω). Assume, for now,
that the receiver is not indifferent between two or more acts of A at any signal s ∈ σ.

4Abusing notation slightly, let v(p) :=
∑
x v(x)p(x) for lotteries p ∈ ∆X.
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(Kamenica and Gentzkow, 2011).

The axioms characterizing representation (1) employ both informational preferences %A

and signal-contingent choices cs. Familiar (von Neumann-Morgenstern) Independence and

Continuity axioms are defined using an appropriate mixture operation on the space of ex-

periments, and the (Anscombe-Aumman) State Independence axiom is expressed using both

preferences %A and choices cs. Thus, with one exception, the representation rests on stan-

dard axioms adapted to the present setting. The key axiom, Consistency, is the exception;

it places minimal restrictions on how preferences %A may vary as the menu A changes. The

main challenge is to show that under Consistency, the prior ν and utility index v of the

sender are not menu-dependent.

The combined representation theorem (Theorem 3) establishes uniqueness of all param-

eters (ν, v, µ, and u) given both the sender’s preferences for information and the receiver’s

signal-contingent choices. It turns out, however, that all parameters can be identified from

the sender’s preferences for information (Theorem 4). This is surprising because information

structures are only indirectly related to the choices made by the receiver and, hence, the

outcomes that agents actually care about. Heterogeneous priors and utilities further com-

plicate matters. In section 5, I first show how the priors can be elicited from the sender’s

preferences. Then, given the priors, the utility indices can be identified.

Preferences for information can also be used to make comparisons between the attributes

of the sender and receiver. I show in section 6 that the sender and receiver have a common

utility index if and only if the sender prefers full disclosure (revealing the true state) in

all menus. This provides a simple, testable characterization of common utilities that holds

independently of whether there is a common prior. In a similar spirit, common priors can be

tested independently of the utility indices: ν = µ if and only if the sender’s preferences are

monotone with respect to the Blackwell information ordering in a class of menus called bets.5

Thus, if A is a bet, then %A is either a completion of the Blackwell ordering or a completion of

the opposite (inverse Blackwell) ordering. Combined, these results show that the sender and

receiver share common priors and utilities if and only if the sender’s preferences satisfy the

Blackwell ordering in all menus. Hence, in the behavioral interpretation, dynamic consistency

is equivalent to the Blackwell ordering.

Finally, section 6 also develops methods to assess the degree of separation between the

attributes of the sender and receiver. In particular, the utility functions v and u exhibit

“more agreement” if the sender prefers full disclosure in a larger set of bets, while the

priors ν and µ exhibit more agreement if the sender’s preferences exhibit fewer violations of

Blackwell monotonicity at “extremes”—pairs of experiments where at least one is reasonably

5A bet is a menu A = {f, g} where there exist lotteries p, q ∈ ∆X such that fω, gω ∈ {p, q} for all ω.
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informative.

These results illustrate the power and applicability of information structures as objects

of choice. Preferences for information may seem rather abstract, but it is not difficult to

see how individuals reveal such preferences in different environments. For example, many

online newspapers allow subscribers to customize their news feeds by selecting categories

(sports, finance, politics, etc) about which they will be informed of new developments, while

online retailers enable custom tailoring of information about new products or services. By

customizing such news feeds, individuals reveal what type of information they consider to be

the most valuable. Laboratory settings, of course, provide another setting where preferences

for information can be directly elicited. This paper does not carry out any empirical or ex-

perimental exercises, but demonstrates that informational choice may be a valuable resource

for analysts interested in testing models or identifying parameters.

Finally, note that preferences for information are a natural primitive in both interpreta-

tions of the model. In Bayesian Persuasion settings, informational preferences of the sender

(together with signal-contingent choices of the receiver) are the most an analyst can hope

to observe. In the behavioral interpretation, informational choice offers an effective form

of commitment power. Hard commitment opportunities are relatively rare compared to the

abundance of available information sources. Thus, while an individual might not be able

to avoid encountering tempting alternatives, he may be able to resist temptation when it

arrives by selectively paying attention to information sources—in particular, ones that are

more likely to make tempting alternatives seem less appealing.

1.1 Related Literature

In general, this paper is related to the rapidly growing literature on information disclosure

with sender commitment power.6 This literature was initiated by Kamenica and Gentzkow

(2011) (henceforth KG) and Rayo and Segal (2010). My model is most closely related to the

framework of KG, where a sender chooses an experiment and a receiver takes an action after

observing a signal generated by the experiment. Building on techniques of Aumann and

Maschler (1995), KG study when and how the sender can improve his own expected payoff

through “persuasion”: choosing an experiment and committing to revealing its signal.

My analysis and motivation differs from that of KG in several ways. Rather than study-

ing when the sender might benefit from persuasion, this paper investigates how observed

choices can be used to test whether the sender and receiver conform to the KG frame-

work. In particular, the representation characterizes what it means for the receiver to be a

6In contrast, the cheap talk literature assumes the sender has no commitment power; see, for example,
Crawford and Sobel (1982).
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Bayesian information processor and the sender a sophisticated planner. The characterization

is expressed in terms of the choices agents actually make in the KG framework—the sender

chooses information, and the receiver chooses among risky alternatives. I also show how

observed choices can be used to identify and compare the parameters (beliefs and utilities)

of the agents. While KG take as given a fixed set of actions and consider a sender who is free

to choose his most-preferred information structure, my analysis involves a rich set of choice

data: for each menu of acts, the sender’s full ranking of information structures is observed.

The full ranking is needed to characterize the agents and identify parameters. Finally, while

KG assume common priors, my framework permits the sender and receiver to hold different

priors.7

Dynamic inconsistency and related conceptual issues have been studied in a variety of

settings by several authors. For example, Epstein and Le Breton (1993) show that if an indi-

vidual is dynamically consistent, then his beliefs can be represented by a probability distribu-

tion. Karni and Schmeidler (1991) show that preferences over conditional lotteries satisfying

standard assumptions are dynamically consistent if and only if they are expected utility pref-

erences. Similarly, Border and Segal (1994) show that upon observing low-probability events,

conditional preferences are well-approximated by expected utility preferences provided the

individual is dynamically consistent and has differentiable ex-ante preferences. Grant, Kajii,

and Polak (2000) examine when a dynamically consistent individual with non-expected util-

ity preferences prefers more information to less. These papers take underlying preferences

(in some cases, corresponding utility representations) as given and examine implications of

dynamic consistency or inconsistency. In contrast, the main primitive of my model is an in-

dividual’s ranking of information structures themselves, from which preferences and beliefs

can be identified and dynamic consistency tested.

Behavioral economists have developed models where information suppression or self-

signaling can be used to regulate behavior. Carrillo and Mariotti (2000) show that, in a model

of personal equilibrium, time-inconsistent agents may benefit from acquiring less information.

Benabou and Tirole (2002, 2006) study equilibrium models where players rationally limit the

information available to future selves. In the persuasion literature, Lipnowski and Mathevet

(2016) examine how a benevolent principal should disclose information to agents who are

susceptible to temptation, reference-dependence, or other behavioral considerations. In a

similar spirit, the behavioral interpretation of my model provides a general analysis of the

incentives for information acquisition for individuals lacking time-consistent preferences or

prior beliefs.

7Alonso and Câmara (2016) extend the KG framework to allow heterogeneous priors and find that (gener-
ically) the sender benefits from persuasion under heterogeneous priors.
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Azrieli and Lehrer (2008) consider preferences over information structures and provide

necessary and sufficient conditions for such a preference to be represented by expected utility

in some decision problem.8 In their representation, a utility index and a menu of actions

are deduced from the preference for information (the prior is taken as given), but cannot be

uniquely pinned down. Azrieli and Lehrer (2008) note that their axioms can be modified to

allow an endogenous prior but that it, too, cannot be uniquely identified. My model resolves

these identification issues by examining preferences for information in all (exogenously spec-

ified) menus—even with time-inconsistent priors or utilities, all parameters can be uniquely

identified from this richer collection of preferences.

Several authors have studied Bayesian updating from a decision-theoretic perspective.

Ghirardato (2002) develops a representation using conditional preferences over acts; that is,

families of preferences indexed by events, with the interpretation that the event represents

an observed signal. Karni (2007) uses a similar family of conditional preferences defined

over conditional acts. The extra structure of conditional acts permits both prior beliefs

and state-dependent utilities to be identified, in addition to testing Bayesian updating of

partitional information. Wang (2003) axiomatizes Bayes’ rule and some of its extensions

in a setting with conditional preferences over (infinite-horizon) consumption-information

profiles; preferences are conditioned on sequences of previously realized events. My repre-

sentation characterizes Bayesian updating using signal-contingent preferences over standard

Anscombe-Aumann acts. Importantly, the set of signals is richer than the state space over

which acts are defined, enabling a simple and intuitive characterization.

Finally, Lu (2016) shows how random choice data reveals an individual’s information, pro-

vided the individual is a Bayesian subjective expected utility maximizer. Decision-theoretic

models of rational inattention9 also use standard choice primitives to make inferences about

an individual’s preferences, beliefs, and information processing ability. I take the opposite

approach and use an individual’s informational choice to make inferences about his under-

lying tastes and beliefs.

8See also Gilboa and Lehrer (1991), who study a similar problem for the case of partitional information
structures.

9See Denti, Mihm, de Oliveira, and Ozbek (2016), Ellis (2018), and Caplin and Dean (2015)
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2 Framework and Notation

2.1 Outcomes, lotteries, acts

Let X denote a finite set of N ≥ 2 outcomes. Elements of X are typically denoted x, y,

while elements of ∆X (lotteries) are denoted p, q.10 A lottery p assigns probability p(x) to

outcome x.

A utility index is a function u : X → R. If p ∈ ∆X and u is a utility index, let

u(p) :=
∑

x∈X u(x)p(x) denote the expected utility of p. A utility index u′ is a positive affine

transformation of u if there are real numbers A > 0 and B such that u′(x) = Au(x) +B for

all x ∈ X. The notation u′ ≈ u indicates that u′ is a positive affine transformation of u.

There is a finite, exogenous state space Ω = {1, . . . ,W} where W ≥ 2 denotes the number

of states. Arbitrary states are typically denoted ω, ω′, while members of ∆Ω (probability

distributions over Ω) are denoted µ or ν.

As a notational convention, subscripts denote states. For example, a distribution µ ∈ ∆Ω

may be expressed as µ = (µω)ω∈Ω, where µω is the probability assigned to state ω.

A function f : Ω → ∆X is an (Anscombe-Aumann) act. Let F denote the set of all

acts. Acts are typically denoted f , g, h, and may be written as profiles: f = (fω)ω∈Ω, where

fω ∈ ∆X. The set F is equipped with the standard mixing operation: if f, g ∈ F and

α ∈ [0, 1], then αf + (1− α)g := (αfω + (1− α)gω)ω∈Ω.

A menu is a finite, nonempty set of acts. Menus are typically denoted A, B. Let A
denote the set of all menus.

2.2 Blackwell Experiments

Definition 1 (Blackwell Experiment). A matrix σ with entries in [0, 1] is a (finite) Blackwell

experiment if it has exactly W rows, no columns consisting only of zeros and, for each row,

the sum of entries is exactly one. Let E denote the set of all Blackwell experiments.

Implicitly, each column of σ represents a signal that might be generated. Thus, each

row represents a state-contingent probability distribution over a finite set of signals. The

assumption that each column contains at least one nonzero entry eliminates signals that

have zero probability of occurrence in each state. Note that entries in any given column are

not required to sum to one.

10For any finite set Y , ∆Y denotes the standard probability simplex over Y , equipped with the usual
convex mixture operation.
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It will be convenient to express experiments in terms of their columns. Let

S := {s = (sω)ω∈Ω ∈ [0, 1]Ω : ∃ω such that sω 6= 0} (2)

Elements of S are called signals. Clearly, every column of an experiment σ corresponds to a

signal s where sω is the entry for the column in row ω.

The statement ‘s ∈ σ’ means s is a column of σ. Note that an experiment may have

duplicate columns. When quantifying over signals in an experiment, different columns of σ

are distinguished even if they are duplicates. For example, the requirement that each row in

σ has entries summing to one may be expressed as ‘∀ω,
∑

s∈σ sω = 1’ because the summation

notation implicitly distinguishes between duplicate columns of σ. Similarly, statements like

‘∀s ∈ σ, ys ∈ Y ’ associate (potentially) different members of Y to different columns of σ,

even if those columns are duplicates.

For each σ and α ∈ (0, 1), let ασ denote the matrix formed by multiplying each entry of

σ by α. If σ, σ′ ∈ E and α ∈ (0, 1), then ασ ∪ (1− α)σ′ denotes the matrix consisting of the

columns of ασ together with the columns of (1− α)σ′. It is easy to verify that this mixture

yields a well-defined experiment.11 If α ∈ {0, 1}, then ασ∪ (1−α)σ′ refers either to σ (when

α = 1) or to σ′ (when α = 0).

2.3 Primitives

I take as primitive two sets of choice data:

(1) For each menu A ∈ A, a preference %A over E

(2) For each signal s ∈ S, a choice correspondence cs such that, for each menu A, cs(A) is

a nonempty subset of A.

The family (%A)A∈A captures the sender’s preferences for information. In particular,

σ %A σ′ means the sender expects a higher average payoff from σ than from σ′, given that

the receiver observes a signal generated from the chosen experiment before choosing from A.

Hence, the sender does not choose from A and cannot restrict the choices available to the

receiver; he can only influence the receiver’s choice by controlling the available information.

The receiver’s choices are captured by the collection (cs)s∈S. For each signal s and menu

A, cs(A) ⊆ A consists of the acts from A that are chosen by the receiver after observing

signal s. In practice, the receiver’s choice is conditioned on a pair (σ, s) where s ∈ σ; that

11Note that this operation is not commutative. Specifically, ασ ∪ (1− α)σ′ means the matrix (1− α)σ′ is
appended to the right of matrix ασ. So, typically, ασ ∪ (1− α)σ′ 6= (1− α)σ′ ∪ ασ.
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is, the receiver must know both σ as well as the signal s generated by σ. However, for

a Bayesian information processor, only the entries of s matter. To minimize notation, I

condition choices on signals s instead of pairs (σ, s).12

3 The Representation

The objective is to represent the sender’s preferences for information in terms of subjective

expected utility and the receiver’s signal-contingent behavior as subjective expected utility

with Bayesian updating. Throughout, I will often refer to the two decision makers as DM1

(the sender) and DM2 (the receiver).

First, consider the receiver. In the representation, the receiver has a full-support prior µ

and a utility index u.

Definition 2 (Bayesian Representation). A pair (µ, u) is a Bayesian Representation for

(cs)s∈S if µ ∈ ∆Ω has full support, u : X → R is a non-constant utility index and, for all

s ∈ S and A ∈ A,

cs(A) =

{
f ∈ A : ∀g ∈ A,

∑
ω

u(fω)µsω ≥
∑
ω

u(gω)µsω

}
(3)

where the posteriors µs satisfy Bayes rule:

∀ω ∈ Ω, µsω =
µωsω∑

ω′∈Ω µω′sω′
(4)

In a Bayesian representation, each choice correspondence cs is rationalized by expected

utility maximization with prior µ, utility index u, and Bayesian updating. That is, upon

observing signal s, DM2 updates his prior µ to the Bayesian posterior µs given by (4). Then,

he chooses f ∈ A if and only if f maximizes expected utility under beliefs µs and utility

index u. Figure 1 provides geometric representations of this behavior.

Next, consider the sender. The key to understanding his preference for information is to

examine how, from his perspective, an experiment σ transforms into an Anscombe-Aumann

act. Fix a state ω. Since σ specifies a distribution over signals for state ω, and since

the receiver’s choice from A only depends on the realized signal, the distribution of signals

becomes a distribution of choices (acts) from A. Evaluating the acts at state ω turns the

distribution of acts into a distribution of lotteries, which the sender reduces to a single

12If choices were conditioned on pairs (σ, s), the following additional axiom would be required: for all σ, σ′

with s ∈ σ and s ∈ σ′, c(σ,s) = c(σ
′,s).
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Figure 1: Geometric representations of DM2’s behavior when |Ω| = 2. DM2 prefers f over
g at signal s if and only if

∑
ω u(fω)sωµω ≥

∑
ω u(gω)sωµω. Thus, in utility space, acts f

correspond to points (µ1u(f1), µ2u(f2)), and choices at signals s are determined by the ratio
s1/s2. Consequently, DM2’s choices from A = {f, g, h} partition S into convex cones. The
arrows pointing to signals in (b) are perpendicular to the corresponding lines in (a).

lottery. Repeating this procedure for each state yields a lottery for each state and, hence, an

Anscombe-Aumann act called an induced act. The next definition formalizes this process.

Definition 3 (Induced Acts). The set of induced acts for experiment σ at menu A is given

by

FA(σ) :=

{(∑
s∈σ

sωf
s
ω

)
ω∈Ω

: ∀s ∈ σ, f s ∈ ∆cs(A)

}
(5)

For each menu A, let E∗(A) denote the set of experiments such that FA(σ) is a singleton. If

σ ∈ E∗(A), then FA
ω (σ) := fω, where FA(σ) = f ∈ F .

Definition 3 generalizes the idea above to include the possibility of ties—signals that make

DM2 indifferent between two or more acts. If a signal s results in a tie, then acts f s ∈ ∆cs(A)

represent randomizations over the acts that DM2 might choose from A at s. Since s occurs

with probability sω in state ω, this yields a lottery
∑

s∈σ sωf
s
ω ∈ ∆X for state ω. Repeating

this procedure for each state ω yields an Anscombe-Aumann act, and letting f s vary across

all members of ∆cs(A) generates a set of acts. This set, denoted FA(σ), encapsulates the full

range of possibilities for DM2’s behavior given that second period choices must be consistent

with the correspondences cs. Figure 2 illustrates the procedure.

Note that FA(σ) is defined using only the receiver’s choice behavior, and that no assump-

tions (other than non-emptiness) about the choice correspondences are required to compute

FA(σ). Since an experiment σ consists of finitely many signals, FA(σ) references only finitely

many observations of DM2’s choices. Hence, testable properties of DM1’s preferences can

be expressed in terms of induced acts.
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Figure 2: Induced acts. In (a), the induced act is FA(σ) = (r1f1 + s1g1 + t1h1, r2f2 +
s2g2 + t2h2). In (b), signal s′ results in a tie between g and h, and therefore FA(σ′) =
{(r′1f1 + s′1[αg1 + (1− α)h1], r′2f2 + s′2[αg2 + (1− α)h2]) : α ∈ [0, 1]}.

When FA(σ) contains exactly one act, the sender evaluates the act using subjective

expected utility. If FA(σ) contains more than one act, however, then standard expected

utility cannot unambiguously assign a value to this set. The representation permits a high

degree of freedom regarding the evaluation of such sets; only basic requirements of linearity

and consistency, defined next, are imposed.

Definition 4. A family of functions (V A : E → R)A∈A is:

1. A representation of (%A)A∈A if V A(σ) ≥ V A(σ′)⇔ σ %A σ′

2. Linear if V A(ασ ∪ (1− α)σ′) = αV A(σ) + (1− α)V A(σ′)

3. Consistent if V A(σ) ≥ V A(σ′) ⇔ V B(σ̂) ≥ V B(σ̂′) whenever FA(σ) = FB(σ̂) and

FA(σ′) = FB(σ̂′).

In other words, linear functions are separable with respect to the mixture operation on

experiments, and a consistent family of representations derives from some common ranking

of convex sets of acts.

Definition 5 (Value of Information Representation). A family (V A : E → R)A∈A of consis-

tent, linear representations and a pair (ν, v) constitute a Value of Information Representation

for (%A)A∈A if ν ∈ ∆Ω has full support, v : X → R is a non-constant utility index and, for

each menu A and all σ ∈ E∗(A),

V A(σ) =
∑
ω

v(FA
ω (σ))νω (6)

Definition 5 requires that, whenever FA(σ) consists of a single act, DM1 computes the

expected utility of that act. For experiments involving ties (signals making DM2 indifferent
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between two or more acts), the only constraints on V A are linearity and consistency. Thus,

the representation is fairly silent regarding the sender’s attitude toward ties. DM1 may

adhere to sender-preferred tie-breaking, as is typically assumed in the literature, but such

a rule is not required.13 Instead of best-case beliefs, he might hold worst-case beliefs, or

perhaps receive bonus utility or disutility from the presence of ties—these (and many other)

rules satisfy linearity and consistency. The advantage of Definition 5 is that it does not

impose a specific, arbitrary tie-breaking rule and, hence, does not require an additional

axiom characterizing such a rule.14

3.1 Characterization of DM1

In this section I focus on DM1. I present six axioms employing both first-period preferences

%A and second-period choices cs, and show that if DM2 has a Bayesian representation,

then these axioms are necessary and sufficient for DM1 to have a Value of Information

representation with standard uniqueness properties. In section 3.2 I present five axioms

on second-period choices cs and show that they are necessary and sufficient for DM2 to

have a Bayesian representation, also with standard uniqueness properties. A combined

representation theorem characterizing both decision makers follows immediately.

The first three axioms for DM1 are standard vNM axioms, adapted to operate on Black-

well experiments and their mixtures. The Independence and Continuity axioms hold by the

linearity requirement for Value of Information representations and the fact that (i) FA(σ) is

convex for all A and σ, and (ii) FA(ασ ∪ (1 − α)σ′) = αFA(σ) + (1 − α)FA(σ′) whenever

DM2 has a Bayesian representation15; see the appendix for proofs.

Axiom A1 (Rationality). Each %A is complete and transitive.

Axiom A2 (Independence). If σ �A σ′ and α ∈ (0, 1), then ασ ∪ (1 − α)σ′′ �A

ασ′ ∪ (1− α)σ′′ for all σ′′.

13This means the sender ranks experiments as if, at every signal s resulting in a tie, the receiver selects
an act in cs(A) that is most-preferred by the sender. Formally, each %A is represented by the function

V
A

(σ) := maxf∈FA(σ)

∑
ω v(fω)νω.

14To expand on this point, other models achieve best-case tie-breaking rules by imposing an appropriate
upper semi-continuity axiom. Such axioms are not testable. In the present framework, formulating an
appropriate continuity assumption introduces many complications because—unlike preferences over acts
or menus—preferences %A exhibit severe discontinuities (in both σ and A) even under sender-preferred tie-
breaking. Focusing on the more general class of preferences given by Definition 5 circumvents these problems
and makes tie-breaking attitude a subjective characteristic of the individual: his attitude is revealed by his
preferences.

15For convex sets X,Y ⊆ F and α ∈ [0, 1], let αX + (1− α)Y := {αf + (1− α)g : f ∈ X, g ∈ Y }.
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Axiom A3 (Continuity). If σ �A σ′ �A σ′′, then there exist α, β ∈ (0, 1) such that

ασ ∪ (1− α)σ′′ �A σ′ �A βσ ∪ (1− β)σ′′.

Although these axioms are familiar, the Mixture Space Theorem (Herstein and Milnor,

1953) does not apply because the set E with the given mixture operation does not qualify

as a mixture space. The final axiom, Consistency, will help circumvent this problem.

For p ∈ ∆X, h ∈ F , and ω ∈ Ω, let p[ω]h denote the act formed by taking h and

replacing hω with p. The next axiom is analogous to the State Independence axiom in the

Anscombe-Aumann model, once again adapted to operate on experiments.16 The version

presented here rules out null states, so that DM1’s prior ν will have full support.

Axiom A4 (State Independence). Suppose FA(σ) = p[ω]h and FA(σ′) = q[ω]h while

FA(σ̂) = p[ω′]ĥ and FA(σ̂′) = q[ω′]ĥ. Then σ %A σ′ implies σ̂ %A σ̂′.

Recall that for each menu A, E∗(A) ⊆ E denotes the set of experiments σ such that FA(σ)

is single-valued. The following axiom is needed to disentangle DM1’s beliefs and utilities.

Axiom A5 (Non-Degeneracy). There is a menu A and experiments σ, σ′ ∈ E∗(A) such

that σ �A σ′.

Finally, Axiom A6 states that DM1’s ranking of two experiments is determined by their

associated sets of induced acts. This is the only axiom asserting any relationships between

different orderings %A and %B.

Axiom A6 (Consistency). If FA(σ) = FB(σ̂) and FA(σ′) = FB(σ̂′), then σ %A σ′ implies

σ̂ %B σ̂′.

Consistency serves two purposes. First, suppose FA(σ) = FA(σ′). In this case, Consis-

tency forces σ ∼A σ′. Thus, a given preference %A can be transformed into a ranking of

convex sets of acts. As demonstrated in the appendix, this means each %A can be embedded

in a mixture space and that axioms A1–A3 translate into the standard vNM axioms via

the embedding. Hence, a linear representation can be derived for each %A even though E ,

equipped with the mixing operation defined above, does not qualify as a mixture space.

16The standard axiom says: if ω, ω′ are non-null and p[ω]h is weakly preferred over q[ω]h, then p[ω′]ĥ is

weakly preferred over q[ω′]ĥ for all ĥ.
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Second, suppose FA(σ) = {f} = FB(σ̂) and FA(σ′) = {g} = FB(σ̂′). Then, by Con-

sistency, DM1 ranks σ %A σ′ if and only if σ̂ %B σ̂′. Thus, it is as if these rankings derive

from a single ordering of f and g. This is needed for DM1 to hold a utility index and prior

beliefs that do not depend on the menu under consideration. If {f} and {g} are replaced

with arbitrary (non-singleton) sets of acts, then, in a similar spirit, the axiom requires DM1’s

ranking of the sets to be independent of the menu under consideration.

Theorem 1. Suppose (cs)s∈S has a Bayesian representation. The collection (%A)A∈A satis-

fies Axioms A1–A6 if and only if it has a Value of Information Representation. Moreover,

ν is unique and, for each A, V A (hence, v) is unique up to positive affine transformation.

Although all but one of the axioms for DM1 are adaptations of the Anscombe-Aumann

axioms to this setting, Theorem 1 is not a direct corollary of the Anscombe-Aumann theorem.

There are two obstacles. First, it is not obvious that variation in σ induces enough variation

in DM2’s choices to establish existence of an expected utility representation for DM1, or

uniqueness of ν and v provided a representation exists. In particular, consider the set

FA := {FA(σ) : σ ∈ E∗(A)} of induced acts under menu A. The restriction of %A to E∗(A)

transforms into a ranking over FA. Although FA is convex, it is typically a proper subset of

F . Therefore, depending on µ, u, and the menu A under consideration, the axioms may not

be active on a sufficiently rich domain of induced acts to establish existence or uniqueness of

an expected utility representation for DM1. A key step of the proof constructs a menu A∗

from which existence is established and candidates for ν and v can be uniquely identified.

Second, it is also not obvious that the Consistency axiom is strong enough to ensure

unique (menu-independent) beliefs and utilities can be obtained for DM1. If two menus

have disjoint sets of induced acts, then Consistency seemingly has no bite and DM1 could

hold different beliefs and/or utilities in those menus. The main challenge of the proof is to

show that any two menus can be connected by a finite sequence of menus with significantly

overlapping sets of induced acts along the way, thus ensuring uniqueness. In section 4, I

sketch the steps needed to prove Theorem 1; for a complete proof, please see the appendix.

3.2 Characterization of DM2

While the axiomatic characterization of DM1 requires both the ex-ante preferences (%A)A∈A

of DM1 and ex-post choice correspondences (cs)s∈S of DM2, the characterization of DM2’s

Bayesian Representation only requires the correspondences (cs)s∈S.

Axiom B1 (Rationality). Each choice function cs satisfies WARP.
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Since the model restricts attention to finite menus, Axiom B1 implies that for each s

there is a complete and transitive relation %s rationalizing cs. Specifically, f %s g if and

only if f ∈ cs({f, g}).

Axiom B2 (Non-Degeneracy). For each s, there are acts f, g such that f �s g.

This is a standard axiom in the Anscombe-Aumann model. It says that each relation %s

does not simply assign indifference among all acts, and is needed to disentangle preferences

and beliefs.

Next, endow F with the standard Euclidean topology and S with the topology of real

projective space.17 Let F × S employ the corresponding product topology.

Axiom B3 (Continuity). For each f , the sets {(g, s) ∈ F × S : f %s g} and {(g, s) ∈
F × S : g %s f} are closed.

This axiom expresses two forms of continuity. First, holding s constant, it says that

%s satisfies the usual continuity: contour sets of %s are closed. Second, holding f and g

constant, it says that if f �s g, then it is possible to perturb s while maintaining strict

preference for f over g. This holds because the Bayesian posterior µs varies continuously

with s in the given topology.

If E ⊆ Ω and f, h ∈ F , let fEh denote the act g such that gω = fω for ω ∈ E and

gω = hω otherwise. Similarly, if s, t ∈ S, let sEt denote the profile r such that rω = sω for

ω ∈ E and rω = tω otherwise. Note that r may not be a well-defined signal (to qualify as a

signal, at least one entry of r must be nonzero).

Axiom B4 (State Independence). Suppose f = p[ω]h and g = q[ω]h while f ′ = p[ω′]h′

and g′ = q[ω′]h′. If sω, s
′
ω′ > 0 and f %s g, then f ′ %s′ g′.

This is a slight modification of the standard State Independence axiom used in the

Anscombe-Aumann model. It rules out null states for DM1’s prior (so the prior µ will

have full support) and ensures the existence of a common ranking over lotteries indepen-

dently of the state and independently of the preference %s under consideration.

Axiom B5 (Bayesian Independence). If f �s g, α ∈ (0, 1) and t = sE(αs), then

17This is the quotient topology of the standard Euclidean topology on [0, 1]Ω\0 with respect to the equiv-
alence relation s ∼ λs for all λ > 0.
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(αf + (1− α)h)Ef �t (αg + (1− α)h)Eg for all h.

To understand this axiom, suppose f �s g. When comparing (αf + (1 − α)h)Ef and

(αg + (1 − α)h)Eg, an expected utility maximizer “cancels” the (1 − α)h from both acts

to yield a comparison between “(αf)Ef” and “(αg)Eg”. Effectively, this scales down the

utilities from acts f and g by a factor of α on event E, making event Ec := Ω\E more

attractive. Bayesian Independence says that scaling down the likelihood of states in Ec

by the same factor α compensates for this change: the ranking is preserved under signal

t = sE(αs). Thus, Bayesian Independence expresses an equivalence between scaling utilities

and scaling state likelihoods. Note that when E = Ω, Bayesian Independence reduces to the

standard independence axiom for %s.

Theorem 2. The collection (cs)s∈S satisfies axioms B1–B5 if and only if it has a Bayesian

representation (µ, u). Furthermore, µ is unique and u is unique up to positive affine trans-

formation.

The proof of Theorem 2 is fairly straightforward. First, observe that each %s satisfies

the Anscombe-Aumann axioms. In particular, Bayesian Independence implies the standard

Independence axiom, and the standard Continuity axiom is implied by axiom B3. Hence,

%s has an expected utility representation with parameters (µs, us), where µs is a prior and

us a utility index. Axiom B4 implies that %s and %s′ have the same ranking over constant

acts (lotteries), so it is without loss of generality to assume us = u for all s.

The only remaining task is to ensure that the priors µs are the correct Bayesian posteriors

given signal s for some prior µ. The natural candidate for µ is µe, where eω = 1 for all ω,

because the signal e provides no new information. Essentially, the Bayesian Independence

axiom ensures that the probability ratios satisfy µsω
µs
ω′

= sωµeω
sω′µ

e
ω′

, as prescribed by Bayes’ rule.

For full detail, please see the appendix.

The following result is an immediate consequence of Theorems 1 and 2.

Theorem 3. The collections (%A)A∈A and (cs)s∈S satisfy Axioms A1–A6 and B1–B5 if and

only if the sender has a Value of Information representation and the receiver a Bayesian

representation. The associated priors ν, µ are unique, and the utility indices v, u are unique

up to positive affine transformation.

Proof. First apply Theorem 2 to establish a Bayesian representation (µ, u) for DM2 with the

desired uniqueness properties. Then apply Theorem 1 to establish a Value of Information

representation for DM1, also with the desired uniqueness properties.
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4 Outline of the Proof

In this section, I outline the key steps needed to prove Theorem 1. For simplicity, I restrict

attention to the case of two states and three outcomes. For a complete proof, please see the

appendix.

The first step is to establish a linear representation V A for each %A. By the Consistency

axiom, %A translates into an ordering onMA := {FA(σ) : σ ∈ E}, a family of convex sets of

acts. Recall that FA(ασ ∪ (1− α)σ′) = αFA(σ) + (1− α)FA(σ′) when DM2 has a Bayesian

representation. It follows that the set MA (equipped with the standard mixing operation

for convex sets) is a mixture space and that (by Consistency) Axioms A1–A3 translate into

the von Neumann-Morgenstern axioms on MA. Thus, the mixture space theorem gives a

linear representation on MA, which (by Consistency) maps back to a linear V A on E .

The second step constructs a menu A such that the set of induced acts is rich enough

to identify candidates for ν and v. The key is to find a full-dimensional set L ⊆ ∆X and

lotteries p, q such that L× p and q × L are subsets of FA := {FA(σ) : σ ∈ E∗(A)} ⊆ F , the

set of all induced acts (not involving ties) for menu A. This way, the State Independence

axiom implies there is a unique von Neumann-Morgenstern utility index, v, that applies in all

states, ensuring a separation of beliefs and utilities. The construction of A and verification

of its properties is contained in the appendix.

The third step establishes that the parameters (ν, v) are not menu-dependent. More

precisely, the proof shows there is a unique, non-degenerate, linear preference % on F from

which every %A derives: if FA(σ) = f and FA(σ′) = g, then σ %A σ′ if and only if f % g.

Thus, when there are no ties, preferences are determined by % and a unique pair (ν, v) exists.

Consistency (Axiom A6) plays a key role here. Clearly, %A is associated with a linear

representation on FA. If FA has full dimension, then a linear preference on FA has a unique

linear extension, %, to all of F . Therefore, if dimFB ≤ dim(FA∩FB), the linear relation on

FB (corresponding to %B) agrees with %. In this sense, B inherits a representation from A.

The proof, therefore, establishes two facts: (i) every B inherits a representation from some

A where FA has full dimension; and (ii) if FA and FB have full dimension, then %A and %B

derive from the same linear ordering % on F .

Part (ii) is the crucial step. If FA and FB each have full dimension, but FA ∩ FB = ∅,
then Consistency seemingly has no bite and %A and %B may require different choices of ν

or v (if expected utility representations even exist for these preferences). The core of the

argument establishes that for any such pair of menus, there exists a finite sequence of menus

A = A0, A1, . . . , An = B such that, for all 0 ≤ i < n, FAi ∩ FAi+1
has full dimension. Then,

Consistency forces each %Ai to derive from the same % on F .
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(a) Oriented (b) Not Oriented

Figure 3: Orientedness when |X| = 3. The lotteries Aω = {fω, gω, hω} are solid dots and
the lotteries Bω = {f ′ω, g′ω, h′ω} are circles. In this case, λ = 0 (the lines are indifference
curves for u). The configuration in (b) is not oriented because the affine path from Aω to
Bω (traversing along the lines) yields a collinear set of lotteries at α = 1/2.

An important special case is when A and B are oriented translations of each other. With

two states and three outcomes, this means we can write A = {f, g, h} and B = {f ′, g′, h′}
with the following properties. First, there exists λ ∈ R2 such that, in utility space, f ′ = f+λ,

g′ = g+ λ, and h′ = h+ λ. That is, (u(f ′1)µ1, u(f ′2)µ2) = (u(f1)µ1, u(f2)µ2) + λ (and similar

formulas for g′ and h′). This is the translation property. Second, for every ω and α ∈ [0, 1],

the set Aαω := {αf ′ω+(1−α)fω, αg
′
ω+(1−α)gω, αh

′
ω+(1−α)hω} is affinely independent. This

is the orientedness property, and it ensures that the convex hull of Aαω has full dimension in

∆X for all α and ω (see Figure 3). Third, f, g, h are chosen in such a way that for each of

the three acts, there is a signal s such that DM2 strictly prefers that act after observing s.

When A and B are oriented translations, there is a smooth (linear) path from A to B

where the set of induced acts has full dimension along the way. Specifically, the path is given

by Aα := {αf ′ + (1− α)f, αg′ + (1− α)g, αh′ + (1− α)h} for α ∈ [0, 1]. Smoothness yields

the desired sequence of menus A = A0, A1, . . . , An = B by taking an appropriate finite set

of points α. The sets of induced acts for adjacent menus have full-dimensional intersections,

forcing %A and %B to derive from the same preference on F and, hence, employ the same

prior and utility function.

It turns out that, after a series of transformations, one can restrict attention to menus A

and B that are oriented translations of one another. The construction involves several steps

and is relegated to the appendix.

5 Identification

Theorem 3 characterizes the behavior of DM1 and DM2 in terms of the primitives (%A)A∈A

and (cs)s∈S and shows that ν, µ, v, and u can be identified from those primitives. The

goal of this section is to establish a stronger identification result: all four parameters can be
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identified using only DM1’s preferences (%A)A∈A.

The analysis is carried out by considering two individuals, DM and
•

DM, each decomposed

into two decision makers: DM = (DM1,DM2), and
•

DM = (
•

DM1,
•

DM2). DM and
•

DM are

characterized by data (%A, cs)A∈A,s∈S and (
•

%A,
•

cs)A∈A,s∈S, respectively, satisfying axioms

A1–A6 and B1–B5. Thus, their behavior is captured by parameters ((ν, v), (µ, u)) for DM and

((
•

ν,
•

v), (
•

µ,
•

u)) for
•

DM. Note that this section only concerns identification of the parameters.

Hence, the results are meaningful for an outside observer who, rather than testing the axioms,

is willing to assume they are satisfied and wishes to identify the priors and utilities of the

sender and receiver.

For convenience, I assume sender-preferred tie-breaking for both DM and
•

DM.18 This

assumption is not important for the results. The techniques developed here can be modified

to accommodate a broader set of tie-breaking rules (any representation satisfying Definition

5), but sender-preferred tie-breaking allows a slightly cleaner presentation.

The main result of this section is:

Theorem 4. The following are equivalent:

(i) ν =
•

ν, µ =
•

µ, v ≈ •

v and u ≈ •

u

(ii) For all menus A, %A =
•

%A

Theorem 4 states that informational preferences (%A)A∈A, alone, are sufficient to pin

down the priors ν, µ and utility indices v, u (up to positive affine transformation). For

identification purposes, second-period choice data (cs)s∈S are not required. This formally

expresses the idea that, for Bayesian decision makers, preferences for information are powerful

and revealing primitives of analysis.

It is easiest to proceed by breaking the result into a series of smaller steps. I begin

by establishing conditions under which DM and
•

DM share common first- or second-period

priors. With those characterizations in place, I provide a sketch of the proof of Theorem 4 in

section 5.2. Given that Theorem 4 is a rather surprising result, section 5.3 provides further

discussion of this theorem and related issues.

Some additional terminology is needed to proceed. A bet is a menu of the form A =

{pEq, pFq} where E,F ( Ω are nonempty and E 6= F . Whenever the need to be explicit

about E and F arises, I will refer to such menus as EF -bets. Similarly, a bet may be referred

to as a (p, q)-bet. Bets are useful devices because they are common in real life and because

18Recall that under sender-preferred tie-breaking, each %A is represented by the function V
A

(σ) :=
maxf∈FA(σ)

∑
ω v(fω)νω.
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cardinal properties of utility indices do not influence decision making in bets.19

For each ω, let eω ∈ S denote the signal s such that sω = 1 and sω′ = 0 for all ω′ 6= ω.

Then σ∗ := [eω : ω ∈ Ω] (the identity matrix) denotes perfect information; that is, σ∗ reveals

the true state ω. Let e = (1, . . . , 1) ∈ S denote the signal assigning likelihood 1 to each state

of the world. Notice that e itself (interpreted as a column vector) qualifies as an experiment.

In particular, e denotes an experiment generating no information.

A neighborhood of a signal s is a set N ε(s) ⊆ S consisting of all signals t such that

‖s − t‖ < ε (that is, all signals within distance ε > 0 of s in the standard Euclidean

topology).20

5.1 Eliciting Priors

When comparing priors, the analysis revolves around the concept of equivalent signals. If

s, t ∈ S are distinct signals and σ is an experiment such that s, t ∈ σ, let σs+t denote the

experiment formed by deleting column t and replacing column s with s+ t.21

Definition 6. Let E,F ( Ω be nonempty events such that E 6= F and let s, t ∈ S.

(i) s and t are weakly EF -equivalent if σ ∼A σs+t whenever A is an EF -bet and s, t ∈ σ.

(ii) s and t are EF -equivalent if there exist neighborhoods N ε(s), N ε(t) of s and t such

that s′ and t′ are weakly EF -equivalent whenever s′ ∈ N ε(s) and t′ ∈ N ε(t).

Similar definitions hold for
•

EF -equivalence by replacing ∼A with
•∼A. Signals s and t are

equivalent if they are both EF - and
•

EF -equivalent.

The idea of Definition 6 is that EF -equivalent signals yield the same posterior ranking

of E and F for DM2: if s and t are EF -equivalent, then µs(E) > µs(F ) if and only if

µt(E) > µt(F ). Since DM2’s choices from EF -menus only depend on the posterior rankings,

EF -equivalent signals yield the same choices from a given EF -bet. Hence, DM1 will be

indifferent between σ and σs+t. Note that although the definition requires σ ∼A σs+t for all

EF -bets A and all σ with s, t ∈ σ, in practice a single such indifference likely indicates the

desired equivalence; only relatively rare instances, such as when DM2 is indifferent between

the lotteries p, q involved in the EF -bet, can yield σ ∼A σs+t for non-EF -equivalent signals.

19If, for example, u(p) > u(q), then DM2 prefers pEq over pFq if and only if he assigns greater probability
to event E than to event F ; the magnitude u(p)− u(q) has no effect.

20Note that this differs from the topology on S employed by Axiom B3. For the purposes of this section,
the Euclidean topology is easier to work with.

21In the event that multiple columns of σ coincide with s or t, take σs+t to be an experiment formed by
deleting one column corresponding to t, and adding t to one column corresponding to s.
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s+ t

(q, p)

(p, q)

Figure 4: Equivalent signals. Here, s and t are equivalent because they both belong to the
(p, q) region of A = {(p, q), (q, p)}. Thus, so does s + t. It follows that σ ∼A σs+t, where
σ = [r, s, t] and σs+t = [r, s + t]. Note that r is not equivalent to s or t. The slope of the
line separating the (p, q) and (q, p) regions has slope µ1

µ2
. Thus, knowing which signals are

equivalent reveals µ.

Proposition 1. The following are equivalent:

(i) µ =
•

µ

(ii) For all nonempty E,F ( Ω with E 6= F , EF -equivalence implies
•

EF -equivalence.

(iii) There exists E,F ⊆ Ω such that E 6⊆ F , F 6⊆ E, and EF -equivalence implies
•

EF -

equivalence.

Proposition 1 says the receiver’s prior can be identified from the sender’s preferences for

information independently of whether they share a common prior or utility index. Specifi-

cally, the set of EF -equivalent signals reveals µ. Part (iii) implies that µ can be identified

by determining the set of EF -equivalent signals for a single choice of E and F ; there is no

need to examine all combinations of E and F .

Next, consider the problem of comparing first-period priors ν and
•

ν. The next proposition

shows that these priors are characterized by DM1’s preferences over a particular class of

experiments composed of equivalent signals. Given an EF -bet A, binary experiments σ =

[s, t], σ′ = [s′, t′] are equivalent if s is EF -equivalent to s′ and t is EF -equivalent to t′.

Proposition 2. The following are equivalent:

(i) ν =
•

ν

(ii) For all bets A and equivalent experiments σ, σ′ that neither %A nor
•

%A rank indifferent

to e, σ ∼A σ′ ⇒ σ
•∼A σ′.
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Figure 5: Identifying ν from menu A = {(p, q), (q, p)}. If [s, t] ∼A [s+ δ, t− δ], then δ1
δ2

= ν2
ν1

.

Proposition 2 says that the sender’s prior is revealed by the indifferences in his preferences

for information when facing bets. The idea is that when σ = [s, t] and σ′ = [s′, t′] are

equivalent experiments, there is a δ ∈ RΩ such that σ′ = [s+δ, t−δ]. Moreover, cs(A) = cs
′
(A)

and ct(A) = ct
′
(A). The fact that neither experiment is ranked indifferent to e implies that

cs(A) 6= ct(A), as illustrated in Figure 5. The representation, together with σ ∼A σ′, implies∑
ω∈E νωδω −

∑
ω∈Ec νωδω = 0. The set of vectors δ satisfying this expression is revealed by

all such indifferences σ ∼A σ′ and has dimension |Ω|− 1, thus pinning down ν. For example,

with |Ω| = 2, ν is pinned down by a single such δ: ν1δ1 = ν2δ2, together with ν1 + ν2 = 1,

reveals ν.

5.2 Proof of Theorem 4

In this section, I sketch the main arguments required to prove Theorem 4; for a complete

proof, please see the appendix. Clearly, (%A)A∈A = (
•

%A)A∈A if ν =
•

ν, µ =
•

µ, v ≈ •

v,

and u ≈ •

u. For the converse, suppose (%A)A∈A = (
•

%A)A∈A. Then ν =
•

ν and µ =
•

µ by

Propositions 1 and 2. Thus, the only task is to show that the utility indices are pinned down

by the sender’s preferences for information.

The first step is to show that the indifference curves for v and u can be identified by

examining the sender’s preferences in bets. Observe that if A is a (p, q)-bet, then %A is

degenerate (σ ∼A σ′ for all σ, σ′) if and only if v(p) = v(q). Thus, the indifference curves

of v in ∆X can be identified from (%A)A∈A, and they must coincide with those of
•

v since

(%A)A∈A = (
•

%A)A∈A.

Now fix an interior lottery p. For any lottery q 6= p, DM1 and DM2 agree on the

ranking of p and q if and only if σ∗ �A e, where A is a (p, q)-bet.22 Thus, the agreement

and disagreement regions are revealed by (%A)A∈A. By linearity, these regions reveal the

22Specifically, DM1 and DM2 agree on the ranking of p and q if v(p) 6= v(q) and u (at least weakly) agrees
with the ranking of p and q under v.
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p v = v(p)

u = u(p)

(a)

p

q

(b)

p

q

(c)

Figure 6: Identifying two candidates for v and u. The (linear) indifference curve for v
through p can be identified from (%A)A∈A, as can the agreement region for u and v (panel
(a)); thus, indifference curves for u can be identified. Panels (b) and (c) indicate the two
possibilities for the direction of increasing utilities that are consistent with the agreement
region (shaded), implying that either (v, u) or (−v,−u) represent preferences. In each case,
lottery p is strictly preferred over q.
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Figure 7: Identifying v and u. If f , g, and h are each chosen by DM2 under (v, u), then only
f and h are chosen by DM2 under (−v,−u) (panel (a)). Thus, (v, u) and (−v,−u) yield
different divisions of the signal space (panels (b) and (c)). In (b), experiment σ = [s, t] is
ranked indifferent to e by DM1 because both signals result in choice g. In (c), s and t yield
different choices, and therefore (for most choices of f and h) σ is not ranked indifferent to
e. Thus, only one of (v, u) or (−v,−u) can be consistent with DM1’s preferences (%A)A∈A.

indifference curves for u (and, once again, these must agree with the indifference curves of
•

u).

The agreement and disagreement regions narrow the possibilities for v and u down to

two cases; specifically, there are indices v and u such that either (v, u) or (−v,−u) are the

correct functions (up to positive affine transformation); see Figure 6.

The final step is to show that only one of (v, u) or (−v,−u) can rationalize (%A)A∈A.

The key is to consider a menu A = {f, g, h} where, under index u, each act is the unique

optimum under some signal. Then, under index −u, one act is never selected at any signal.

This yields a different division of S, so that (for example) there are experiments σ, σ′ that

the sender ranks indifferent under (−v,−u) but not under (v, u); see Figure 7.
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5.3 Additional Remarks on Theorem 4

Theorem 4 is a strong identification result, and indicates that it may be possible to re-

formulate (axiomatize) the model using only the preferences (%A)A∈A. However, Theorem

4 holds under the assumption that DM1 and DM2 conform to Value of Information and

Bayesian representations, respectively, and it is not clear that such an axiomatization is

feasible. Moreover, the characterization of DM2 (Theorem 2) is of independent interest, as

it provides a novel characterization of Bayesianism under a rich domain of signals.

Regarding feasibility, there are two issues. First, even with signal-contingent choices,

proving the existence of a Value of Information Representation requires considerable effort.

Second, and more importantly, it is not clear that suitable axioms on (%A)A∈A can be found

that fully characterize the representation. For example, it is not obvious how axioms on

(%A)A∈A can substitute for the Bayesian Independence axiom of DM2, or how the State

Independence and Consistency properties of DM1 can be expressed without explicitly refer-

encing second-period choices cs. It seems unlikely that a characterization can be found that

does not begin by deriving candidates for some (possibly intermediate) parameters and then

asserting axioms on those derived objects—a less than ideal approach, at least for readers

who take a descriptive view of decision theory.

One possibility is to consider a restricted model where the individual is dynamically

consistent (that is, ν = µ and v ≈ u). Under these assumptions, preferences (%A)A∈A

satisfy stronger forms of continuity and independence, as well as the Blackwell information

ordering. This seems like a more promising approach, and may be an interesting avenue for

future research.

6 Comparing Individuals

In this section, I show how the data (%A)A∈A and (cs)s∈S can be used to make comparisons

between the priors and preferences of the sender and receiver. The analysis is divided into two

parts. First, in section 6.1, I examine how the sender’s preferences for information may be

used to test whether the sender and receiver share a common prior, a common utility index,

or both. Then, in section 6.2, I develop comparative notions of dynamic (in)consistency.

In particular, I explore what it means for the sender and receiver to have priors or utilities

that disagree more (or less), and characterize these relationships in terms of the sender’s

preferences for information.

As in section 5, the emphasis is on the underlying parameters. Thus, the results are

relevant for an outsider observer who is willing to assume the axioms are satisfied and wishes
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to perform comparative statics on the parameters. Throughout, I assume sender-preferred

tie-breaking. Once again, this simplifies the presentation but is not essential for the results.

Several results involve the Blackwell information ordering, denoted w. Thus, w is a

partial order on E , and σ w σ′ means σ is more informative than σ′.23 As is well-known,

σ w σ′ if and only if σ′ is a garbling of σ; that is, σ′ = σM , where M is a stochastic matrix

(each row of M is a probability distribution). Clearly, σ∗ w σ w e for all σ (recall that σ∗

denotes perfect information, while e denotes no information).

6.1 Comparing DM1 and DM2

Suppose (%A)A∈A and (cs)s∈S satisfy axioms A1–A6 and B1–B5, so that DM1 has a Value

of Information representation (ν, v) and DM2 has a Bayesian representation (µ, u). The goal

is to formulate tests indicating whether the two decision makers have a common prior or a

common utility index without having to explicitly identify these parameters. The first result

provides a characterization of common utility indices.

Proposition 3. The following are equivalent:

(i) v ≈ u

(ii) For all menus A and all experiments σ, σ∗ %A σ

(iii) For all bets A and all experiments σ, σ∗ %A σ

Proposition 3 offers a simple way to test whether preferences over ∆X are a source

of disagreement for the sender and receiver. Specifically, the sender prefers full disclosure

in all menus if and only if v ≈ u. This characterization holds independently of whether

the sender and receiver share a common prior. Moreover, the characterization is expressed

solely in terms of the informational preferences of the sender—signal-contingent choices of

the receiver are not required to test whether v ≈ u.

To see why Proposition 3 holds, observe that when σ∗ reveals the true state ω, DM2

chooses an act f ∗ ∈ A such that u(f ∗ω) ≥ u(fω) for all f ∈ A. If v ≈ u, then DM1 and DM2

agree on the optimal act. This holds for all states, and therefore σ∗ %A σ for all σ ∈ E .

Conversely, if DM1 and DM2 disagree about the ranking of some pair of lotteries p and q,

then there is a menu A (in fact, a (p, q)-bet) and a state ω where DM1 disagrees with DM2’s

choice from A, making full disclosure suboptimal for DM1. For a complete proof, please see

the appendix.

The characterization of common priors revolves around the following definition:

23By now there are many different presentations of Blackwell’s characterization. See de Oliveira (2018),
Bielinska-Kwapisz (2003), Crémer (1982), or Leshno and Spector (1992) for accessible treatments.
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(q, p)

(p, q)

µ

ν

Figure 8: Illustration of Proposition 4. The µ line (slope µ1
µ2

) is DM2’s cutoff, and the ν line

(slope ν1
ν2

) is DM1’s (hypothetical) cutoff. If DM1 and DM2 agree on the ranking of p and
q, then DM1 disagrees with DM2’s choices at signals inside the shaded region, and agrees
outside of that region (if they disagree on the ranking of p and q, then the agreement and
disagreement regions are swapped). When such a wedge exists, Blackwell monotonicity fails
if both decision makers are not indifferent between p and q.

Definition 7 (Blackwell Monotonicity). A binary relation % on E is Blackwell monotone if

either

(i) For all σ, σ′ ∈ E , σ w σ′ implies σ % σ′, or

(ii) For all σ, σ′ ∈ E , σ w σ′ implies σ′ % σ.

In other words, a preference % is Blackwell monotone if it agrees with the Blackwell

ordering (whenever applicable) on all of E , or reverses it (whenever applicable) on all of E .

Proposition 4. The following are equivalent:

(i) ν = µ

(ii) For all bets A, %A is Blackwell monotone

Proposition 4 establishes Blackwell monotonicity of %A for all bets A as a necessary and

sufficient condition for common priors. This characterization holds independently of whether

v ≈ u and, like Proposition 3, utilizes only the informational preferences of the sender.24

To understand why Proposition 4 holds, suppose there are two states and consider a bet

A = {(p, q), (q, p)} where u(p) > u(q). Then DM2 chooses (p, q) if and only if s1µ1 ≥ s2µ2. If

DM1 could (hypothetically) choose from A after observing s, and if his preferences satisfied

v(p) > v(q), he would choose (p, q) if and only if s1ν1 ≥ s2ν2 (if instead v(q) > v(p), he

24Observe that statement (ii) of Proposition 4 is testable and could be asserted as an additional axiom on
(%A)A∈A. The associated representation theorem would characterize Value of Information representations
with common priors.

27



would choose (p, q) if and only if s2ν2 ≥ s1ν1). Thus, if ν = µ and v(p) > v(q), DM2’s

choices agree with DM1’s hypothetical choices at all signals, but reverses them at all signals

if v(q) > v(p). This makes %A Blackwell monotone (see the appendix for a complete proof).

If, on the other hand, ν 6= µ, then there is a wedge between the cutoffs for DM1 and

DM2 (Figure 8). If DM1 and DM2 agree on the ranking of p and q (that is, either they both

prefer p over q or they both prefer q over p), then DM1’s (hypothetical) choices agree with

those of DM2 outside of the wedge and disagree with those inside the wedge. If they disagree

on the ranking of p and q, then the wedge is the agreement region instead. In either case,

violations of Blackwell monotonicity emerge by constructing experiments σ w σ′ utilizing

signals near DM2’s cutoff. In particular, garbling σ in such a way that a signal crosses over

DM2’s cutoff can yield the desired violation. The construction is somewhat involved and

therefore relegated to the appendix.

Corollary 1. If µ = ν and A is a bet, then either

(i) σ∗ %A σ %A e for all σ, or

(ii) e %A σ %A σ∗ for all σ

Corollary 1 follows immediately from Proposition 4 and the fact that σ∗ w σ w e for all

σ. If A is a (p, q)-bet where the sender and receiver agree on the ranking of p and q, case (i)

applies; otherwise, case (ii) applies. This result does not fully characterize common priors,

but provides a simple way to test (refute) the hypothesis of common priors: σ∗ and e must

be at opposite extremes of %A in order for ν = µ to hold.

The decision maker is dynamically consistent if ν = µ and v ≈ u. The next proposition

is a direct consequence of Propositions 3 and 4.

Proposition 5. The decision maker is dynamically consistent if and only if either of the

following (equivalent) conditions hold:

(i) For all menus A, σ w σ′ implies σ %A σ′

(ii) For all bets A, σ w σ′ implies σ %A σ′

This proposition says that the decision maker is dynamically consistent (and therefore

behaves like a standard Bayesian) if and only if his informational preferences satisfy the

Blackwell information ordering in all decision problems. Part (ii) says that, in fact, adherence

to the Blackwell ordering in bets characterizes standard Bayesian behavior.
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Figure 9: More consistent utilities. In (a), v and u are nearly opposite preferences, as
indicated by the narrow agreement region. In (b), the agreement region expands.

6.2 Measures of Consistency

The goal of this section is to define what it means for the attributes (priors and utilities)

of the sender to agree more with those of the receiver, and to characterize these relation-

ships in terms of the sender’s value of information. Once again, analysis is carried out by

considering two pairs of decision makers, DM and
•

DM, and I maintain the assumption of

sender-preferred tie-breaking for both pairs. Proposition 6 characterizes
•

DM as having first-

and second- period utility indices that are more aligned than those of DM, while Proposition

7 characterizes
•

DM as having first- and second-period priors that are more aligned.

Definition 8. DM1 and DM2 agree on the ranking of lotteries p, q ∈ ∆X if either [v(p) >

v(q) and u(p) ≥ u(q)] or [v(q) > v(p) and u(q) ≥ u(p)]. A similar definition holds for
•

DM

with
•

v and
•

u in place of v and u.

Definition 8 says that DM1 and DM2 agree on the ranking of p and q if u does not

contradict a strict ranking of p and q under v: if the sender strictly prefers p over q, then

the receiver (at least weakly) prefers p over q as well. This leads naturally to the following:

Definition 9. The preferences of
•

DM are more consistent than those of DM if, for all

p, q ∈ ∆X such that DM1 and DM2 agree on the ranking of p and q,
•

DM1 and
•

DM2 agree

on the ranking as well.

Note that Definition 9 does not require DM and
•

DM to rank p and q the same way. For

example, DM1 and DM2 may prefer p over q while
•

DM1 and
•

DM2 prefer q over p. All that

matters is that within each pair of decision makers, there is no disagreement regarding the

ranking of p and q.

It is not difficult to see that if
•

v and
•

u are “between” the indices v and u in that
•

v = αv + (1 − α)u and
•

u = βv + (1 − β)u for some α, β ∈ [0, 1], then
•

v and
•

u are more

consistent than v and u. Hence, the definition is not vacuous.
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Proposition 6. The following are equivalent:

(i) The preferences of
•

DM are more consistent than those of DM

(ii) For all bets A and experiments σ, σ∗ �A σ implies σ∗
•

�A σ

Proposition 6 says that the preferences of
•

DM are more aligned than those of DM if,

when facing bets,
•

DM1 finds perfect information more attractive than DM1 does. The logic

of this result is similar to that of Proposition 3. If A is a (p, q)-bet and σ∗ �A σ, then in

fact σ∗ %A σ′ for all σ′. Thus, DM1 and DM2 agree on the ranking of p and q (in particular,

v yields a strict preference that u does not reverse). For
•

DM1 and
•

DM2 to agree on the

ranking of p and q, we therefore require σ∗
•

�A σ (and, hence σ∗ %A σ′ for all σ′). Note

that
•

DM1 and
•

DM2 agree on all rankings (that is,
•

v =
•

u) only when perfect information is

optimal for
•

DM1 in all bets. Thus, Proposition 6 is a natural extension of Proposition 3.

Definition 10. Let E,F ⊆ Ω and s ∈ S. DM1 and DM2 agree on the ranking of E and F

at s if either [νs(E) > νs(F ) and µs(E) > µs(F )] or [νs(F ) > νs(E) and µs(F ) > µs(E)]. A

similar definition holds for
•

DM with
•

ν and
•

µ in place of ν and µ.

This definition says that the sender and receiver agree on E and F at s if and only if

the Bayesian posteriors νs and µs rank E and F the same way: either both assign greater

probability to E, or both assign greater probability to F .

Definition 11. The priors of
•

DM are more consistent than those of DM if, for all E,F ⊆ Ω

and all s ∈ S,
•

DM1 and
•

DM2 agree on the ranking of E and F at s whenever DM1 and

DM2 agree on the ranking of E and F at s.

In other words, the priors of
•

DM are more consistent than those of DM if, for any pair

of events, there is a larger set of signals that make
•

DM1 and
•

DM2 agree on the ranking of

those events. In this sense, having more consistent priors means that it is “easier” to get the

sender and receiver to agree on the ranking of any pair of events.

Definition 11 is not vacuous: if, for example, α, β ∈ [0, 1],
•

ν = αν + (1 − α)µ, and
•

µ = βν + (1 − β)µ, then the priors of
•

DM are more consistent than those of DM.25 Thus,

when
•

µ is “closer” to
•

ν than µ is to ν, the priors of
•

DM are more consistent.

To relate informational preferences to the notion of more-consistent priors, it is tempting

to extend the logic of Proposition 4. For example, if A is a (p, q)-bet and DM1 and DM2 agree

on the ranking of p and q, then ν = µ if and only if %A satisfies the Blackwell ordering. Thus,

25In fact, with |Ω| = 2, the priors of
•

DM are more consistent than those of DM if and only if such α and

β exist. With three or more states,
•

ν and
•

µ need not be mixtures of ν and µ in order for the priors of
•

DM
to be more consistent than those of DM.
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Figure 10: More consistent priors. In (a), there is a relatively large gap between ν and
µ—the slopes of the two lines are ν1/ν2 and µ1/µ2, respectively. In (b), the gap narrows.

if ν 6= µ, one might expect fewer violations of the Blackwell ordering as the gap between ν

and µ closes. Indeed, as the wedge between ν and µ (Figure 10) narrows, the “agreement”

region expands and there are new pairs of experiments where σ w σ′ and σ
•

%A σ′, making
•

%A more consistent with the Blackwell ordering.

It turns out, however, that if the priors of
•

DM are more consistent than those of DM,

then
•

%A is only more consistent with the Blackwell ordering than %A on a restricted domain

of experiments. In particular, a ranking σ %A σ′ (where σ w σ′) may be reversed by
•

%A if

σ is not “extreme” in the sense defined below.

Some additional definitions are needed to formalize these concepts. An ε-neighborhood

of an experiment σ is a set

N ε(σ) :=

{
σ′ ∈ E : ∀s′ ∈ σ′, s′ ∈

⋃
s∈σ

N ε(s)

}

where ε > 0 and N ε(s) := {t ∈ S : ‖s − t‖ < ε}. Thus, for every σ′ ∈ N ε(σ) and s′ ∈ σ′,
there is a signal t ∈ σ such that s′ is within distance ε of t.

A preference relation % over E is degenerate if σ ∼ σ′ for all σ, σ′ ∈ E ; otherwise, it is

non-degenerate. A menu A is a non-degenerate bet if it is a bet and both %A and
•

%A are

non-degenerate.

Definition 12. Let E,F ( Ω be nonempty events such that E 6= F . An experiment σ is

EF -extreme if there exists a neighborhood N ε(σ) such that, for all non-degenerate EF -bets

A and all σ′ ∈ N ε(σ) where σ ∈ E∗(A) and σ w σ′,

(i) σ 6∼A e

(ii) σ∗ �A e⇒ σ %A σ′
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(iii) e �A σ∗ ⇒ σ′ %A σ

The definition of
•

EF -extreme experiments is similar, with
•

%A in place of %A.

Definition 12 says that an experiment σ is EF -extreme if, in every non-degenerate EF -

bet A = {pEq, pFq}, %A is Blackwell monotone near σ and σ is not ranked indifferent to

e. Blackwell monotonicity is imposed by conditions (ii) and (iii), which distinguish whether

DM1 and DM2 agree or disagree on the ranking of p and q. Condition (ii) says that if they

agree on the ranking, then %A satisfies the Blackwell ordering on N ε(σ), while (iii) says that

if they disagree on the ranking, then %A reverses the Blackwell ordering on N ε(σ).

As shown in the appendix, EF -extremeness amounts to the property that every signal

s ∈ σ belongs to the agreement region (if DM1 and DM2 agree on the ranking of p and q),

or every s ∈ σ belongs to the disagreement region (if DM1 and DM2 disagree on the ranking

of p and q). In both cases, this means the signals of σ are closer to the boundary of S.

Proposition 7. The following are equivalent:

(i) The priors of
•

DM are more consistent than those of DM

(ii) Every EF -extreme experiment is also
•

EF -extreme

(iii) If A is an EF -bet, σ is EF -extreme, and σ w σ′, then σ∗
•

%A e ⇒ σ
•

%A σ′ and

e
•

%A σ∗ ⇒ σ′
•

%A σ.

Proposition 7 provides two characterizations of more consistent priors. To simplify the

discussion, I focus here on bets A where both DM and
•

DM agree on the ranking of the

lotteries. Condition (ii) says that for all E and F , EF -extremeness implies
•

EF -extremeness.

Since extreme experiments consist of signals in the agreement region, this means that
•

DM

has a larger agreement region, hence more consistent priors.

Condition (iii) says that if σ is EF -extreme and σ w σ′, then σ
•

%A σ′; that is,
•

%A satisfies

the Blackwell ordering on pairs of experiments where the more informative experiment is EF -

extreme. This is the sought-after characterization—when priors are more consistent, there

are fewer violations of Blackwell monotonicity (provided at least one of the experiments is

sufficiently informative).

In practice, an analyst may find it easier to use the identification techniques of section 5 to

elicit the parameters (ν, µ) and (
•

ν,
•

µ) directly rather than testing the criteria of Proposition

7. Indeed, verifying (or refuting) EF -extremeness requires infinitely many observations if

the priors are not known. Nonetheless, Proposition 7 establishes an important qualifier for

the intuition that a “more dynamically consistent” individual is more consistent with the

Blackwell ordering: at least one experiment must be sufficiently informative, relative to the

events under consideration, for the conclusion to hold.
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7 Conclusion

In this paper, I have developed a revealed-preference model of information disclosure. Lever-

aging both the sender’s preferences for information and the receiver’s signal-contingent

choices, the main representation theorem characterizes the testable implications of a large

class of communication models with sender commitment power (Bayesian persuasion). An

intermediate result characterizes the receiver as a Bayesian information processor, provid-

ing a novel foundation for such behavior. The sender and receiver can be interpreted as a

single individual, reflecting the behavior of a dynamically inconsistent decision maker who—

lacking hard commitment power—influences future choice through selective exposure to new

information.

The results highlight the power and usefulness of information structures (Blackwell ex-

periments) as objects of choice. Although information is of purely instrumental value to

standard rational decision makers, the sender’s preferences for information fully reveal the

priors and utility functions of the agents. Testable conditions on the sender’s preferences

also characterize the differences between the beliefs or utilities of the two decision makers.

An advantage of the informational-preference approach is that it characterizes the in-

teraction in terms of the choices that agents actually make in disclosure models. Moreover,

people frequently compare and choose information structures in daily life. The results of this

paper demonstrate how observations of such choices can be used to test models and identify

parameters, expanding the types of data that can be used in revealed-preference analysis.

It seems plausible that other theories of decision might also be characterized from the

perspective of informational choice, and that the techniques developed here can be adapted

to that purpose. The standard Bayesian behavior studied here is a natural starting point,

but it may (for example) be possible to analyze costly information processing, ambiguity,

or other behavioral considerations using preferences for information. I leave the analysis of

such models to future work.

33



A Proof of Theorem 1

Preliminaries

In this section we review some basic definitions and results about affine spaces. Throughout,

we work with (nonempty) subsets of Rn.

If Y ⊆ Rn, the affine hull of Y is the set

aff(Y ) =

{
α0x0 + . . .+ αmxm : x0, . . . , xm ∈ Y and

m∑
i=1

αi = 1

}

Elements of aff(X) are called affine combinations of X. Note that the αi are real numbers

(not necessarily belonging to the interval [0, 1]). Clearly, co(Y ) ⊆ aff(Y ), where co(Y ) is the

convex hull of Y .

A set Y ⊆ Rn is an affine space if Y = aff(Y ). Moreover, every affine space Y is of the

form

Y = a+ Z := {a+ z : z ∈ Z}

for some a ∈ Rn and linear subspace Z ⊆ Rn. Since Z is uniquely determined by Y , we may

define the dimension of an affine space to be

dim(Y ) := dim(Z),

where Y = a+ Z. We extend this definition to arbitrary convex subsets C ⊆ R by letting

dim(C) := dim(aff(C))

That is, the dimension of a convex set is the dimension of its affine hull.

Clearly the set ∆X can be identified with a convex subset of Rn, where N = |X| is

the number of outcomes. It is easy to see that dim(∆X) = |X| − 1. Similarly, the set of

Anscombe-Aumann acts can be identified with the set ∆X × . . . × ∆X = ∆X |Ω|, and has

dimension |Ω|(N−1). We will move freely between the lottery/act and vector representations

in several proofs. Finally, we say that a convex subset C ⊆ (∆X)m (m ≥ 1) has full

dimension if dim(C) = dim((∆X)m); that is, if (∆X)m ⊆ aff(C).

A set {x0, . . . , xm} ⊆ Rn is affinely independent if {x1 − x0, . . . , xm − x0} is linearly

independent. If Y ⊆ Rn is an affine space of dimension m − 1 and B = {x0, . . . , xm} ⊆ Y

is affinely independent, then B is an affine basis for Y . In that case, every x ∈ X may be

expressed in affine coordinates : for each x ∈ X, there are unique scalars α0, . . . , αm ∈ R
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with
∑
αi = 1 such that x = α0x0 + . . . αmxm. Every affine space has an affine basis.

Let C ⊆ Rn be convex. A function T : C → R is linear if T (αx + (1 − α)y) =

αT (x) + (1− α)T (y) whenever x, y ∈ C and α ∈ [0, 1]. A function T ∗ : C → R is affine if

T ∗(α0x0 + . . . αnxn) = α0T ∗(x0) + . . .+ αnT ∗(xn)

whenever xi ∈ C, α0x0 + . . .+αnxn ∈ C, and α0 + . . .+αn = 1. Clearly every affine function

is linear; the converse also holds.

If C is convex and T : C → R is linear (hence affine), then T has a unique affine extension

T ∗ : aff(C)→ R. That is, T ∗ is affine and satisfies T ∗(x) = T (x) for all x ∈ C.

Step 1: A linear representation for %A

Lemma 1. For each menu A and experiment σ, FA(σ) is convex.

Proof. Suppose f, g ∈ FA(σ) and α ∈ [0, 1]. Then for each s ∈ σ there are acts f s, gs ∈
∆cs(A) such that f =

(∑
s∈σ sωf

s
ω

)
ω∈Ω

and g =
(∑

s∈σ sωg
s
ω

)
ω∈Ω

. Thus

αf + (1− α)g =

(
α
∑
s∈σ

sωf
s
ω + (1− α)

∑
s∈σ

sωg
s
ω

)
ω∈Ω

=

(∑
s∈σ

sω[αf sω + (1− α)gsω]

)
ω∈Ω

=

(∑
s∈σ

sωh
s
ω

)
ω∈Ω

where hs = αf s + (1− α)gs ∈ ∆cs(A),

so that αf + (1− α)g ∈ FA(σ).

Definition 13. For each menu A, letMA :=
{
FA(σ) : σ ∈ E

}
. If Y, Z ∈MA and α ∈ [0, 1],

let αY + (1− α)Z := {αf + (1− α)g : f ∈ Y, g ∈ Z}.

Lemma 2. If σ, σ′ ∈ E and α ∈ [0, 1], then FA(ασ ∪ (1− α)σ′) = αFA(σ) + (1− α)FA(σ′).

Proof. The statement clearly holds if α ∈ {0, 1}. So suppose α ∈ (0, 1) and let σ̂ =

ασ ∪ (1 − α)σ′. Recall that FA(σ) =
{(∑

s∈σ sωf
s
ω

)
ω∈Ω

: f s ∈ ∆cs(A)
}

and that FA(σ′) ={(∑
s′∈σ′ s

′
ωg

s′
ω

)
ω∈Ω

: gs
′ ∈ ∆cs

′
(A)
}

. Thus:

FA(σ̂) =

{(∑
s∈σ

αsωf
t
ω +

∑
s′∈σ′

(1− α)s′ωg
t′

ω

)
ω∈Ω

: f t ∈ ∆cαs(A), gt
′ ∈ ∆c(1−α)s′(A)

}
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=

{(
α
∑
s∈σ

sωf
t
ω + (1− α)

∑
s′∈σ′

s′ωg
t′

ω

)
ω∈Ω

: f t ∈ ∆cαs(A), gt
′ ∈ ∆c(1−α)s′(A)

}

Note that cλt = ct for all signals t and scalars λ > 0 because DM2 has a Bayesian represen-

tation. Thus

FA(σ̂) =

{(
α
∑
s∈σ

sωf
s
ω + (1− α)

∑
s′∈σ′

s′ωg
s′

ω

)
ω∈Ω

: f s ∈ ∆cs(A), gs
′ ∈ ∆cs

′
(A)

}
=
{
αf + (1− α)g : f ∈ FA(σ), g ∈ FA(σ′)

}
,

as desired.

Definition 14 (Mixture Space). A mixture space (Herstein and Milnor (1953)) is a set M
and an operator ⊕ : [0, 1]×M×M→M (where ⊕(α,m,m′) is written αm⊕ (1− α)m′)

such that:

(i) 1m⊕ 0m′ = m,

(ii) αm⊕ (1− α)m′ = (1− α)m′ ⊕ αm, and

(iii) α[βm⊕ (1− β)m′]⊕ (1− α)m′ = (αβ)m⊕ (1− αβ)m′.

Lemma 3. For each menu A, the pair
(
MA,+

)
(where + is given by Definition 13) is a

mixture space.

Proof. First, we verify that the familyMA is closed under the proposed mixture operation.

If Y, Z ∈ MA, then there exist σY , σZ ∈ E such that FA(σY ) = Y and FA(σZ) = Z. Let

α ∈ [0, 1]. To see that αY + (1−α)Z ∈MA, apply Lemma 2 to get FA(ασY ∪ (1−α)σZ) =

αFA(σY ) + (1− α)FA(σZ) = αY + (1− α)Z.

The remainder of the argument is standard and well-known, but reproduced here for

completeness. Properties (i) and (ii) are simple to verify. For (iii), let Z̃ = βY + (1− β)Z.

To see that αZ̃ + (1 − α)Z = αβY + (1 − αβ)Z, observe that if h ∈ αZ̃ + (1 − α)Z, then

there are acts f ∈ Y and g, g′ ∈ Z such that

h = α(βf + (1− β)g) + (1− α)g′

= αβf + α(1− β)g + (1− α)g′

= αβf + (1− αβ)

[
α(1− β)

1− αβ
g +

1− α
1− αβ

g′
]

∈ αβY + (1− αβ)Z
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Conversely, if h ∈ αβY + (1− αβ)Z, then there are acts f ∈ Y , g ∈ Z such that

h = αβf + (1− αβ)g

= αβf + α(1− β)g + (1− α)g

= α(βf + (1− β)g) + (1− α)g

∈ αZ̃ + (1− α)Z

Hence, (MA,+) is a mixture space.

Lemma 4. Every %A has a unique (up to positive affine transformation) linear representa-

tion V A : E → R.

Proof. The function FA maps %A to a complete and transitive relation DA on MA defined

by:

Y D Z ⇔ ∃σY , σZ such that FA(σY ) = Y, FA(σZ) = Z, and σY %A σZ

This is well-defined because Consistency (A6) forces σ ∼A σ′ whenever FA(σ) = FA(σ′).

Thus, the induced ranking of Y and Z does not depend on the choice of representatives σY ,

σZ . Clearly every Y ∈ MA has such a representative σY (recall that MA := {FA(σ) : σ ∈
E}), and completeness and transitivity of DA is inherited from %A. Let BA denote the strict

part of DA.

By Lemma 2 and the Independence Axiom (A2), DA satisfies the standard vNM in-

dependence axiom: if Y BA Z and Z ′ ∈ MA, then σY �A σZ for all representatives

σY , σZ of Y and Z. Axiom A2 implies ασY ∪ (1 − α)σZ
′ �A ασZ ∪ (1 − α)σZ

′
for all

α ∈ (0, 1) and all representatives σZ
′

of Z ′. Apply Lemma 2 and the definition of DA to get

αY + (1− α)Z ′ BA αZ + (1− α)Z ′, as desired.

A similar argument employing Lemma 2 and Axiom A3 establishes that DA satisfies vNM

Continuity: Y BA Z BA Z ′ implies there are α, β ∈ (0, 1) such that αY + (1 − α)Z ′ BA

Z BA βY + (1− β)Z ′.

Thus, DA is a preference relation satisfying the vNM axioms on the mixture space

(MA,+). By the Mixture Space Theorem (Herstein and Milnor (1953)), DA has a unique

(up to positive affine transformation) linear representation WA :MA → R. This induces a

linear representation V A : E → R for %A by defining V A(σ) := WA(FA(σ)). Moreover, V A

satisfies

V A(ασ ∪ (1− α)σ′) = WA(FA(ασ ∪ (1− α)σ′))

= WA(αFA(σ) + (1− α)FA(σ′)) (by Lemma 2)

= αWA(FA(σ)) + (1− α)WA(FA(σ′)) (by linearity of WA)
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= αV A(σ) + (1− α)V A(σ′),

so that V A is a linear representation for %A.

Step 2: Construction of candidate representation

Recall that N = |X| and u, µ denote the (non-constant) utility index and (full support) prior,

respectively, for DM2. This step of the proof constructs a menu A∗ where the associated set

of induced acts is rich enough to pin down candidates for ν and v.

Lemma 5. There exists an affinely independent set P = {p1, . . . , pN} of interior lotteries

such that:

(i) u(pN) > u(pN−1) > . . . > u(p1), and

(ii) u(p2)− u(p1) > u(p3)− u(p2) > . . . > u(pN)− u(pN−1).

Proof. It is easy to find interior lotteries satisfying conditions (i) and (ii) (just choose N

utility levels in the range of u that satisfy (i) and (ii), and then pick lotteries yielding those

utility values). If necessary, perturb these lotteries along indifference curves (hyperplanes)

in ∆X to arrive at an affinely independent set. Such perturbations are possible because N

lotteries in ∆X fail to be affinely independent if and only if they sit on an (N−2)-dimensional

hyperplane in ∆X. Since indifference curves are linear and the lotteries are interior, one

lottery can be perturbed along its indifference plane to yield an affinely independent set.

For the remainder of the proof, let P = {p1, . . . , pN} satisfy the requirements of Lemma

5. The convex hull co(P ) has dimension N − 1 (full dimension in ∆X) because P is affinely

independent. It will be useful to think of co(P ) as a polytope and each pi as a vertex of the

polytope. Every nonempty P ′ ⊆ P corresponds to a face of the polytope—in particular, the

convex hull co(P ′) yields a face of dimension |P ′| − 1.

Lemma 6. Let D ⊆ ∆X be a convex subset of co(P ′) for some P ′ ⊆ P such that dimD =

dim co(P ′). If p̂ ∈ P\P ′ and q1, . . . , qn ∈ co(P ′ ∪ {p̂})\co(P ′), then

dim
n⋂
i=1

co(D ∪ {qi}) = dimD + 1

Proof. First, we prove the following claim: if x ∈ D, q ∈ co(P ′ ∪ {p̂})\co(P ′), and ε > 0,

then dim(co(D ∪ {q}) ∩N ε(x)) = dimD + 1, where N ε(x) is the ε-neighborhood of x.

To prove the claim, note that dim(co(D ∪ {q})) = dimD + 1. Therefore, there exists

z1, . . . , zK ∈ co(D ∪ {q})\{x} (K = dimD) such that the set {x, z1, . . . , zK} is affinely
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independent. Thus, the set {z1 − x, . . . , zK − x} is linearly independent. Clearly, for every

i = 1, . . . , K, the line Li through x and zi passes through N ε(x). For each i, let xi ∈
N ε(x)\{x} be a point on Li. Then, since {z1 − x, . . . , zK − x} is linearly independent, the

set {x, x1, . . . , xK} is affinely independent. It follows that co{x, x1, . . . , xK} ⊆ N ε(x) has

dimension dimD + 1, and therefore N ε(x) ∩ co(D ∪ {q}) has dimension dimD + 1. This

proves the claim.

Now fix a point x in the (relative) interior of D and apply the claim to each q =

q1, . . . , qW ∈ co(P ′ ∪ {p̂})\co(P ′). Since x is in the interior of D, there exists εi > 0

(i = 1, . . . , n) such that N εi(x) ∩ co(D ∪ {p̂}) = N εi(x) ∩ co(D ∪ {qi}). Let ε denote the

smallest such εi and choose a point y in the relative interior of co(P ′ ∪{p̂})∩N ε(x). By the

claim, each set N ε(x)∩ co(D ∪{qi}) has dimension dimD+ 1, and y ∈ co(P ′ ∪{p̂})\co(P ′).

Since y ∈
⋂n
i=1 co(D ∪ {qi}), it follows that dim

⋂n
i=1 co(D ∪ {qi}) has dimension D+ 1.

For an ordered pair E = [ω, ω′] (where ω 6= ω′), lotteries p, q, and an act h, let (p, q)Eh

denote the act f such that fω = p, fω′ = q, and fω̂ = hω̂ for all ω̂ 6= ω, ω′. Similar notation

applies for signals: if α, β ∈ [0, 1] and t ∈ S, then (α, β)Et denotes the profile r where

rω = α, rω′ = β, and rω̂ = tω̂ for all ω̂ /∈ E. To qualify as a signal, at least one entry of r

must be nonzero.

Definition 15 (Symmetric Menu). Suppose P = {p1, . . . , pN} satisfies the requirements of

Lemma 5 and that u(p) > u(p) for all p ∈ P . For each E = [ω, ω′], let

AE :=
{

(pi, pN−i+1)Ep : i = 1, . . . , N
}

=
{

(p1, pN)Ep, (p2, pN−1)Ep, . . . , (pN , p1)Ep
}

and let

A∗ :=
⋃
E

AE

Then A∗ is the symmetric menu on (P, p).

Note that a lottery p satisfying u(p) > u(p) for all p ∈ P exists because each lottery of

P is interior. Throughout the remainder of the proof, we take as given a menu A∗ satisfying

the requirements of Definition 15.

Definition 16. For E = [ω, ω′] (where ω 6= ω′) let

SE := {s ∈ S : ω̂ /∈ E ⇒ sω̂ = 0}
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and

EE := {σ ∈ E : ∀s ∈ σ, either s ∈ SE or s = λeω̂ for some λ ∈ (0, 1] and ω̂ ∈ Ω}

Definition 16 says that if s ∈ SE, then states outside of E are assigned likelihood 0 by

s. An experiment σ ∈ EE is composed of signals from SE as well as (scalar multiples of)

indicator signals eω̂ for each ω̂ /∈ E (recall that eω̂ is a signal assigning likelihood 1 to state

ω̂ and 0 to all other states). Observe that SE is convex (s, t ∈ SE implies αs+ (1−α)t ∈ SE

for all α ∈ [0, 1]) and that EE is convex as well (σ, σ′ ∈ EE implies ασ ∪ (1− α)σ′ ∈ EE for

all α ∈ [0, 1]). It is also easy to verify that if s ∈ SE, then cs(A∗) ⊆ AE.

Lemma 7. For each E = [ω, ω′] and f ∈ AE, there is an s ∈ SE such that cs(A∗) = f .

Proof. As noted above, we have cs(A∗) ⊆ AE whenever s ∈ SE. Therefore, we only need to

show that for each f ∈ AE, there is a signal s ∈ SE such that f %s g for all g ∈ AE.

First, we prove that if (pi, pN−i+1)Ep �s (pi+1, pN−(i+1)+1)Ep for some s ∈ SE, then

(pi+1, pN−(i+1)+1)Ep �s (pi+2, pN−(i+2)+1)Ep.

If s ∈ SE and (pi, pN−i+1)Ep �s (pi+1, pN−(i+1)+1)Ep, then

sωµωu(pi) + sω′µω′u(pN−i+1) > sωµωu(pi+1) + sω′µω′u(pN−(i+1)+1)

Equivalently,

sω′µω′ [u(pN−i+1)− u(pN−(i+1)+1)] > sωµω[u(pi+1)− u(pi)]

Observe that, by our choice of P ,

u(pi+1)− u(pi) > u(pi+2)− u(pi+1) (7)

and

u(pN−(i+1)+1)− u(pN−(i+2)+1) > u(pN−i+1)− u(pN−(i+1)+1) (8)

Thus,

sω′µω′ [u(pN−(i+1)+1)− u(pN−(i+2)+1)] > sω′µω′ [u(pN−i+1)− u(pN−(i+1)+1)]

> sωµω[u(pi+1)− u(pi)]

> sωµω[u(pi+2)− u(pi+1)]

so that (pi+1, pN−(i+1)+1)Ep �s (pi+2, pN−(i+2)+1)Ep.
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A similar argument establishes that if (pi, pN−i+1)Ep �s (pi−1, pN−(i−1)+1)Ep for some

s ∈ SE, then (pi−1, pN−(i−1)+1)Ep �s (pi−2, pN−(i−2)+1)Ep.

Thus, for 1 < i < N , we have cs(A∗) = (pi, pN−i+1)Ep if and only if

(pi, pN−i+1)Ep �s (pi+1, pN−(i+1)+1)Ep and (pi, pN−i+1)Ep �s (pi−1, pN−(i−1)+1)Ep

Since s ∈ SE, it cannot be the case that both sω = 0 and sω′ = 0. Suppose sω′ > 0. Using

the representation for DM2, the above conditions are equivalent to

µω′

µω

u(pN−(i−1)+1)− u(pN−i+1)

u(pi)− u(pi−1)
<
sω
sω′

<
µω′

µω

u(pN−i+1)− u(pN−(i+1)+1)

u(pi+1)− u(pi)

By (7) and (8) (with i − 1 in place of i), this yields an interval of values for sω
sω′

such that

cs(A∗) = (pi, pN−i+1)Ep.

For i = 1 or i = N , observe that s ∈ SE satisfies cs(A∗) = (p1, pN)Ep if and only

if (p1, pN)Ep �s (p2, pN−1)Ep while cs(A∗) = (pN , p1)Ep if and only if (pN , p1)Ep �s

(pN−1, p2)Ep (this follows from the first two claims established in this proof). Using the

representation for DM2 in a similar manner, it is easy to see that there exist signals s ∈ SE

such that cs(A∗) = (p1, pN)Ep.

Lemma 8. There exists a convex, full-dimensional set D ⊆ co(P ) such that, for every p ∈ D
and every state ω, there is an experiment σ such that FA∗

ω (σ) = p.

Proof. We will construct D in several steps. First, enumerate Ω = {1, . . . ,W}. We will work

with pairs of the form E = [1, ω] for ω = 2, . . . ,W .

Consider E = [1, ω]. Under perfect information σ∗, we have FA∗

ω̂ (σ∗) = pN for all ω̂.

Notice that σ∗ ∈ EE. There exists δ > 0 such that for s = (1− δ, δ)E0 and t = (δ, 1− δ)E0,

we have cs(A∗) = (pN , p1)Ep and ct(A∗) = (p1, pN)Ep. Thus, the experiment σ = [s, t]∪ [eω̂ :

ω̂ /∈ E] yields FA∗(σ) = (δp1 + (1 − δ)pN , δp1 + (1 − δ)pN)EpN . Thus, both FA∗
1 (σ) and

FA∗
ω (σ) are δp1 + (1 − δ)pN . Mixing σ∗ with σ yields a convex set D1

ω ⊆ co({p1, pN}) of

dimension 1 such that, for all p ∈ D1
ω, there exists σ such that FA∗

ω′ (σ) = p for ω′ = 1, ω.

Since every such set lies on the face co({p1, pN}) and contains pN , the set D1 :=
⋂
ω≥2D

1
ω is

nonempty and has dimension 1.

For each E = [1, ω], pick a signal s ∈ SE such that cs(A∗) = [pN−1, p2]Ep (Lemma 7)

and an experiment σ ∈ EE such that FA∗
ω (σ) = p for some p in the interior of D1. Thus,

σ contains a signal t such that ct(A∗) is a singleton and tω̂ > 0 for ω̂ = 1, ω (otherwise, p

is not in the interior of D1). Therefore, we may assume t − s is a well-defined signal and

that ct−s(A∗) = ct(A∗) (if necessary, replace s with λs for a sufficiently small λ > 0). Let σ′

denote the experiment formed by taking σ, appending s, and replacing t with t − s. Then
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qω := FA∗
ω (σ′) ∈ co{p1, p2, pN}\co{p1, pN}. Taking mixtures of σ′ and σ (and letting σ vary

in order to generate FA∗
ω (σ) = p for all p ∈ intD1) implies that every q ∈ co{intD1, qω}

satisfies FA∗
ω (σ′′) for some σ′′ ∈ SE. Repeating this procedure for every choice of E = [1, ω]

(and also for E = [ω, 1] for some ω) yields lotteries q1, . . . , qW ∈ co{p1, p2, pN}\co{p1, pN}.
By Lemma 6, D2 :=

⋂W
ω=1 co(intD1 ∪ {qω}) has dimension 2. By construction, for every

p ∈ D2 and every ω there is an experiment σ ∈ EE such that FA∗
ω (σ) = p.

We now proceed by induction. Suppose Di ⊆ co{p1, . . . , pi, pN} (2 ≤ i < N) is a convex

set of dimension i and, for all p ∈ Di and all ω, there exists σ ∈ EE such that FA∗
ω (σ) = p.

We construct a convex set Di+1 ⊆ co{p1, . . . , pi, pi+1, pN} of dimension i + 1 such that, for

every p ∈ Di+1 and ω, there exists σ ∈ EE such that FA∗
ω (σ) = p. The procedure is similar

to the previous step. First, take E = [1, ω] and an experiment σ ∈ EE such that FA∗
ω (σ) = p

for some p in the interior of Di. Then σ contains a signal t such that ct(A∗) is a singleton

and tω̂ > 0 for ω̂ ∈ E. Pick a signal s ∈ SE such that cs(A∗) = (pN−i, pi+1)Ep. We may

assume that t − s is a well-defined signal such that ct−s(A∗) = ct(A∗) (if necessary, scale

s down by a factor λ > 0). Let σ′ be an experiment formed by deleting t from σ and

appending t − s and s. Then qω := FA∗
ω (σ′) ∈ co{p1, . . . , pi, pi+1, pN}\co{p1, . . . , pi, pN}.

Repeating this for all ω (as well as E = [1, ω] for some ω) yields lotteries q1, . . . , qW ∈
co{p1, . . . , pi, pi+1, pN}\co{p1, . . . , pi, pN}. By Lemma 6, Di+1 :=

⋂W
ω=1 co(intDi ∪ {qω}) has

dimension i + 1. By construction, for every p ∈ Di+1 and every ω there is an experiment

σ ∈ EE such that FA∗
ω (σ) = p.

For the remainder of Step 2 of the proof, let D ⊆ co(P ) be a set satisfying all requirements

of Lemma 8. The plan is to pick an interior lottery p∗ ∈ D such that, in each state ω, a

full-dimensional set around p∗ can be induced in menu A∗ while holding the induced lotteries

in other states fixed. This will ensure that FA∗ has full dimension and that %A∗ (restricted

to E∗(A∗)) derives from a linear ordering % on F satisfying the standard State Independence

axiom.

Definition 17 (Interior Experiment). Fix a menu A. For each f ∈ A, let SA(f) := {s ∈ S :

cs(A) = f}. An experiment σ is A-interior if:

(i) cs(A) is single-valued for all s ∈ σ, and

(ii) For each f ∈ A, there is exactly one s ∈ σ such that cs(A) = f .

Similarly, any set σ of signals (not necessarily qualifying as an experiment) is A-interior if

it satisfies conditions (i) and (ii) of Definition 17. Such a set is necessarily nonempty and

finite.

42



Let S∗ denote the set of all signals s such that sω > 0 for all ω. The statement σ ⊆ S∗

means σ is a matrix where each column is a member of S∗. Note that such matrices do not

necessarily qualify as experiments.

Definition 18 (ε-Neighborhood). Suppose σ ⊆ S∗ is A-interior and let ε > 0. For each

s ∈ σ, let Qs,ε :=
∏

ω(sω− ε, sω + ε). Let Bε denote the set of all A-interior matrices σ′ ⊆ S∗

such that:

(i) For each ω,
∑

s′∈σ′ s
′
ω =

∑
s∈σ sω, and

(ii) If s ∈ σ, s′ ∈ σ′, and cs(A) = cs
′
(A), then s′ ∈ Qs,ε.

Then Bε is an ε-neighborhood of σ (in A).

Note that Definition 18 does not require σ to be an experiment, and that Bε ⊆ E (in

fact, Bε ⊆ E∗(A)) if and only if σ is an experiment.

The next two lemmas provide general results about menus and (neighborhoods of) ex-

periments that induce full-dimensional sets of acts. These will be used in Step 3 of the proof

as well.

Lemma 9. Suppose that, for each ω, L∗ω ⊆ ∆X is full-dimensional. Let f ∗ ∈ F and define

L∗ω[ω]f ∗ := {p[ω]f ∗ : p ∈ L∗ω}. If G ⊆ F is convex and L∗ω[ω]f ∗ ⊆ G for all ω, then G has

full dimension.

Proof. We need to show that every Anscombe-Aumann act is in the affine hull of G. To

begin, note that for each ω, aff(G) contains aff(L∗ω[ω]f ∗) = {p[ω]f ∗ : p ∈ ∆X} since L∗ω has

full dimension in ∆X. Therefore aff(G) contains aff(C), where

C =
⋃
ω

{p[ω]f ∗ : p ∈ ∆X}

So, it is enough to find a finite set B ⊆ C such that F ⊆ aff(B). A natural candidate for B

involves the (affinely independent) set P = {p1, . . . , pN} ⊆ ∆X. In particular, let

B =
⋃
ω∈Ω

{
pi[ω]f ∗ : i = 1, . . . , N

}
Clearly B ⊆ C. To see that F ⊆ aff(B), let f ∈ F and α = (αω)ω∈Ω ∈ (0, 1)Ω such that∑

ω αω = 1. For each ω, we have ∑
ω′ 6=ω αω′f

∗
ω

1− αω
= f ∗ω ∈ ∆X
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Therefore, there is some f̂ω ∈ ∆X such that

fω = αωf̂ω + (1− αω)

∑
ω′ 6=ω αω′f

∗
ω

1− αω
= αf̂ω +

∑
ω′ 6=ω

αω′f
∗
ω

Since P is affinely independent with dim(aff(P )) = dim(∆X), for each ω there are numbers

βiω (i = 1, . . . , N) such that

f̂ω =
N∑
i=1

βiωp
i and

N∑
i=1

βiω = 1

Thus

fω = αωf̂ω +
∑
ω′ 6=ω

αω′f
∗
ω = αω

N∑
i=1

βiωp
i +

∑
ω′ 6=ω

αω′f
∗
ω

=
N∑
i=1

αiωp
i +

∑
ω′ 6=ω

αω′f
∗
ω, where αiω := αωβ

i
ω

Note that
∑N

i=1 α
i
ω = αω for each ω, so that

∑
ω

∑N
i=1 α

i
ω =

∑
ω αω = 1. Then

∑
ω

N∑
i=1

αiωp
i[ω]f ∗ =

(
N∑
i=1

αiωp
i +

∑
ω′ 6=ω

N∑
i=1

αiω′f
∗
ω

)
ω∈Ω

=

(
αωf̂ω +

∑
ω′ 6=ω

αω′f
∗
ω

)
ω∈Ω

= f

Thus, f ∈ aff(B), as desired.

Lemma 10. Suppose σ ∈ E is A-interior and that, for each ω, there is a nonempty B ⊆ A

such that |B| = N and Bω := {fω : f ∈ B} is affinely independent. If Bε is an ε-neighborhood

for σ, then:

(i) For each ω, FA(Bε) := {FA(σ′) : σ′ ∈ Bε} has a subset of the form {p[ω]f ∗ : p ∈ L∗},
where L∗ ⊆ ∆X is full-dimensional and f ∗ = FA(σ); and

(ii) FA(Bε) contains a full-dimensional ball around FA(σ).

Proof.
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(i) Fix a state ω and let f ∗ = FA(σ) and f ∗−B :=
∑

s∈σ−B sωc
s
ω(A), where σB := {s ∈ σ :

cs(A) ∈ B} and σ−B := σ\σB. Then |σB| = N . Without loss of generality, let Bε

denote an ε-neighborhood of σB. Let ω ∈ Ω and note that for every σ′ ∈ Bε, there

is a natural bijection between signals of σ and signals of σ′; specifically, s ∈ σ and

s′ ∈ σ′ are related if and only if cs(A) = f s = cs
′
(A). For each s ∈ σ, let s′ denote the

corresponding signal in σ′.

Consider σ′ ∈ Bε such that for all s ∈ σ and all ω′ 6= ω, sω′ = s′ω′ . Thus, every such σ′

induces an act of the form p[ω]f ∗, where

p ∈

{∑
s′∈σ′

s′ωf
s
ω + f ∗−B : s′ω ∈ (sω − ε, sω + ε) for all s′ ∈ σ′, and

∑
s′∈σ′

s′ω =
∑
s∈σB

sω

}

=

{∑
s∈σB

(sω + δs)f sω + f ∗−B : |δs| < ε and
∑
s∈σB

δs = 0

}

=

{
f ∗ω +

∑
s∈σB

δsf sω : |δs| < ε and
∑
s∈σB

δs = 0

}

So, it will suffice to show that the set

C :=

{∑
s∈σB

δsf sω : |δs| < ε and
∑
s∈σB

δs = 0

}

has dimension N − 1 (clearly, C is convex). Note that N − 1 is an upper bound on the

dimension of C because C is a translation of a subset of ∆X.

Pick any s∗ ∈ σB and note that if
∑

s∈σB δ
s = 0, then δs

∗
= −

∑
s∈σB\s∗ δ

s. Thus

C =

 ∑
s∈σB\s∗

δsf sω −
∑

s∈σB\s∗
δsf s

∗

ω : |δs| < ε ∀s 6= s∗, and

∣∣∣∣ ∑
s∈σB\s∗

δs
∣∣∣∣ < ε


=

 ∑
s∈σB\s∗

δs(f sω − f s
∗

ω ) : |δs| < ε ∀s 6= s∗, and

∣∣∣∣ ∑
s∈σB\s∗

δs
∣∣∣∣ < ε


Let λs := f sω − f s

∗
ω for each s ∈ σB\s∗. Then {λs : s ∈ σB\s∗} is linearly independent

because Bω = {f sω : s ∈ σB} is affinely independent. Let

C ′ := {0} ∪
{

ε/2

N − 1
λs : s ∈ σB\s∗

}
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Then C ′ is an affinely independent set of N vectors in RN , so that its convex hull has

dimension N − 1. Moreover, C contains the convex hull of C ′ because if λ ∈ co(C ′),

then there are scalars αs ∈ [0, 1] (s ∈ σB) such that
∑

s∈σB α
s = 1 and

λ = αs
∗
0 +

∑
s∈σ\s∗

αs
ε/2

N − 1
λs

We have λ ∈ C because
∣∣∣αs(ε/2)
N−1

∣∣∣ < ε for all s ∈ σB\s∗ and
∣∣∣∑s∈σB\s∗

αs(ε/2)
N−1

∣∣∣ < ε/2.

Since C contains the convex hull of C ′, and C ′ has dimension N − 1, it follows that C

has dimension N − 1 (recall that N − 1 is an upper bound on the dimension of C).

(ii) By part (i), FA(Bε) (hence FA) contains a subset of the form L∗ω[ω]f ∗ for each ω, where

each set L∗ω ⊆ ∆X has full dimension. Since FA is convex, apply Lemma 9 to get the

result.

Lemma 11. There is a full-dimensional set L∗ ⊆ ∆X such that, for all ω, there exists an

act h such that L∗[ω]h := {p[ω]h : p ∈ L∗} ⊆ FA∗.

Proof. Choose a lottery p∗ in the interior of D (recall that D satisfies all requirements of

Lemma 8). Fix a state ω. Then there is an A∗-interior experiment σ such that FA∗(σ) =

p∗[ω]h for some h ∈ F . By part (ii) of Lemma 10, FA∗ contains a full-dimensional ball

around p∗[ω]h. In particular, there is a convex, full-dimensional set L∗ω ⊆ ∆X such that

p∗ belongs to the interior of L∗ω and {p[ω]h : p ∈ L∗ω} ⊆ FA∗ . We may assume that

L∗ω ⊆ D. Since p∗ ∈ D, we can repeat this argument for all ω to get a family of convex,

full-dimensional sets L∗ω ⊆ ∆X, each containing p∗ as an interior point, and acts hω ∈ F

such that {p[ω]hω : p ∈ L∗ω} ⊆ FA∗ . Letting L∗ :=
⋂
ω∈Ω L

∗
ω completes the proof.

Lemma 12. Any linear representation WA∗ : FA∗ → R of %A∗ on E∗(A∗) has a unique

linear extension W : F → R. The extension represents a preference % on F satisfying all of

the Anscombe-Aumann axioms except (possibly) the Non-Degeneracy axiom.

Proof. A linear representation WA∗ exists by Step 1 of the proof (restrict V A∗ to the domain

E∗(A∗) to form WA∗). By Lemmas 9 and 11, FA∗ has full dimension, and therefore WA∗ has

a unique linear extension W : F → R. This induces a complete and transitive relation % on

F by letting f % g if and only if W (f) ≥ W (g). The Independence and Continuity axioms

are satisfied by linearity of W .

To verify that % satisfies the State Independence axiom, suppose p[ω]h % q[ω]h and let

ω′ ∈ Ω and h′ ∈ F . We want to show that p[ω′]h′ % q[ω′]h′. By a standard result, there
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exist linear functions Uω : ∆X → R (unique up to positive affine transformation) such that

W (f) =
∑

ω Uω(fω) for all f ∈ F . Thus, p[ω]h % q[ω]h implies Uω(p) ≥ Uω(q).

Since L∗[ω]hω ⊆ FA∗ for each ω, where L∗ ⊆ ∆X is convex and has full dimension, there

exists r ∈ L∗ and α ∈ (0, 1) such that αp + (1 − α)r ∈ L∗ and αq + (1 − α)r ∈ L∗. Thus,

(αp+ (1−α)r)[ω]hω, (αq+ (1−α)r)[ω]hω, (αp+ (1−α)r)[ω′]hω
′
, and (αq+ (1−α)r)[ω′]hω

′

are elements of FA∗ . Moreover, (αp + (1 − α)r)[ω]hω % (αq + (1 − α)r)[ω]hω because

W ((αp + (1 − α)r)[ω]hω) ≥ W ((αq + (1 − α)r)[ω]hω) if and only if Uω(p) ≥ Uω(q) (recall

that each Uω is linear).

Since %A∗ satisfies State Independence (Axiom A5) on the domain E∗(A∗), it follows

that (αp + (1 − α)r)[ω′]hω % (αq + (1 − α)r)[ω′]hω. Therefore Uω′(p) ≥ Uω′(q), so that

Uω′(p) +
∑

ω̂ 6=ω Uω̂(h′ω̂) ≥ Uω′(q) +
∑

ω̂ 6=ω Uω̂(h′ω̂). Thus, p[ω′]h′ % q[ω′]h′, as desired.

Note that, at this point, we cannot yet invoke the Anscombe-Aumann theorem to derive

unique candidates for ν and v. This is because the Non-Degeneracy axiom only requires

that some menu A (not necessarily A∗) has a non-degenerate preference %A. Step 3 of the

proof will show that all preferences %A (restricted to domains E∗(A)) derive from the same,

uniquely determined linear preference % on F . Then the Non-Degeneracy axiom will imply

that % does not assign indifference among all acts, so that (combined with the above result

proving that % satisfies State Independence) unique beliefs ν and preferences v exist by the

Anscombe-Aumann theorem.

Step 3: Spreading the representation

Throughout the remainder of the proof, assume that DM2’s utility index u has been nor-

malized to take values in [0, 1].

A binary relation % on F is a linear preference relation if it has a linear representation;

that is, a function L : F → R such that L(f) ≥ L(g) ⇔ f % g, and L(αf + (1 − α)g) =

αL(f) + (1 − α)L(g) for all f, g ∈ F and α ∈ [0, 1]. Recall that FA := {FA(σ) : σ ∈
E∗(A)} ⊆ F denotes the set of induced acts for menu A, and that FA is convex because

FA(ασ ∪ (1− α)σ′) = αFA(σ) + (1− α)FA(σ′).

Definition 19. Let A and B be menus such that E∗(A) and E∗(B) are nonempty.

(i) A relation % on F agrees with %A if, for all σ, σ′ ∈ E∗(A), σ %A σ′ ⇔ FA(σ) % FA(σ′).

(ii) A inherits a representation from B if every linear preference relation % on F that

agrees with B also agrees with A.

(iii) A and B share a representation if there is a unique linear preference relation % on F

that agrees with both %A and %B.
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Lemma 13. Let A and B be menus such that E∗(A) and E∗(B) are nonempty.

(i) If dim(FA) = dim(FA ∩ FB) ≤ dim(FB), then A inherits a representation from B.

(ii) If dim(FA) = dim(FA ∩ FB) = dim(FB) = dim(F ), then A and B share a representa-

tion.

Proof. By the Consistency axiom, %A and %B agree on the domain FA ∩ FB. By Lemma

4, the restriction of V B to FA ∩ FB is a linear function L. Since FA ∩ FB is convex and

dim(FA) = dim(FA∩FB) ≤ dim(FB), L has a linear extension to FA. Every such extension

represents a linear preference relation % on FA that agrees with A and B, proving (i). For

(ii), note that L has a unique linear extension to F whenever dim(FA ∩ FB) = dim(F ).

Lemma 14. Suppose A inherits a representation from B. If %B has an expected utility

representation with parameters (v, ν), then so does %A.

Proof. For convenience, let Y = FA and Z = FB. Let LB : Z → R denote the expected

utility representation for %B and LA : Y → R a linear representation for %A (such an LA

exists by Lemma 4 and the fact that FA is convex). By the Consistency axiom, %A and %B

induce the same linear ordering on Y ∩ Z. Let L∗ : Y ∩ Z → R denote the restriction of LB

to the domain Y ∩ Z. Since dim(Y ∩ Z) = dim(Y ) and Y ∩ Z is convex, L∗ has a unique

linear extension to Y . Thus, we may assume LA(f) = L∗(f) for all f ∈ Y ∩Z. So, on Y ∩Z,

LA takes the desired form.

Let f ∈ Y \Z. Since Y is convex and dim(Y ) = dim(Y ∩ Z), there are g, h ∈ Y ∩ Z
and α ∈ (0, 1) such that h = αf + (1 − α)g. Then LA(h) = αLA(f) + (1 − α)LA(g). Since

LA = L∗ on Y ∩ Z, it follows that

LA(f) =
1

α
[L∗(h)− (1− α)L∗(g)]

=
1

α

[∑
ω

v(hω)νω − (1− α)
∑
ω

v(gω)νω

]
=

1

α

∑
ω

[v(αfω + (1− α)gω)− (1− α)v(gω)] νω

=
1

α

∑
ω

[αv(fω) + (1− α)v(gω)− (1− α)v(gω)] νω

=
∑
ω

v(fω)νω,

as desired.

Definition 20. Let A be a menu.
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1. If f ∈ A, the support of f is the set SA(f) := {s ∈ S : cs(A) = f}.

2. A is a k-menu if |A| = k ≥ 2 and each f ∈ A has nonempty support.

3. A is independent if it is a k-menu for some k and, for each ω, there is an N -menu

B ⊆ A such that Bω := {fω : f ∈ B} is affinely independent.

Lemma 15. Suppose A is a k-menu.

(i) If f ∈ A, then SA(f) is a convex cone and has full dimension (in S)

(ii) There exists an A-interior experiment σ

(iii) If A is independent, then FA has full dimension (in F )

Proof.

(i) First, observe that s ∈ SA(f) if and only if, for all g ∈ A,∑
ω

sωµω∑
ω′ sω′µω′

u(fω) >
∑
ω

sωµω∑
ω′ sω′µω′

u(gω)

⇔
∑
ω

sωµωu(fω) >
∑
ω

sωµωu(gω)

It is now straightforward to verify that if s, t ∈ SA(f), then λs ∈ SA(f) for all λ > 0

such that λs ∈ S, and αs + (1 − α)t ∈ SA(f) for all α ∈ [0, 1]. Thus, SA(f) is a

convex cone. To see that it is a full-dimensional subset of S := [0, 1]Ω\0, note that

since the above inequalities are strict, there is an open ball (in the subspace topology

for S derived from the standard topology on RΩ) around each s ∈ SA(f) that preserves

the inequality; since the open ball has full dimension, the result follows.

(ii) Since A is finite and each set SA(f) is a convex cone, there are signals sf (f ∈ A) such

that cs
f
(A) = f and, for each ω,

∑
f∈A s

f
ω ≤ 1 (simply choose any signals sf ∈ SA(f)

and, if necessary, scale them all down by a factor α ∈ (0, 1) to ensure
∑

f∈A s
f
ω ≤ 1).

For each ω, there is an f ∈ A such that u(fω) ≥ u(gω) for all g ∈ A. Thus, sfω can be

increased as needed to ensure
∑

f∈A s
f
ω = 1. Repeat this for each ω to get a well-defined

experiment σ = {sf : f ∈ A}.

(iii) By part (ii), there is an A-interior σ and, hence, a ε-neighborhood around σ. Let ω ∈ Ω.

Since A is independent, there is an N -menu B ⊆ A such that Bω = {fω : f ∈ B} is

affinely independent. Now apply Lemma 10.
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Definition 21. A finite, nonempty set C of convex cones in S is a conic decomposition if

C =
{
SA(f) : f ∈ A

}
for some k-menu A. For each k-menu A, the set

C(A) :=
{
SA(f) : f ∈ A

}
is the conic decomposition for A.

Definition 22. For each k-menu A and f ∈ A, let U(f) := (µωu(fω))ω∈Ω denote the (virtual)

utility coordinate for f , and let U(A) := {U(f) : f ∈ A} denote the utility profile for A. If a

set U ⊆ RΩ
+ satisfies U = U(A) for some k-menu A, then U is a k-utility profile. Finally, a

finite set U ⊆ RΩ
+ is a utility profile if U is a k-utility profile for some k.

Lemma 16. If A and B are k-menus such that U(A) = U(B), then C(A) = C(B).

Proof. This follows immediately from the definition of U(A) and the fact that s ∈ SA(f) if

and only if
∑

ω sωµωu(fω) >
∑

ω sωµωu(gω) for all g ∈ A\{f}.

By Lemma 16, each utility profile U has an associated conic decomposition C(U). Specif-

ically, C(U) is the unique C such that U(A) = U implies C(A) = C.

Definition 23. Let U be a utility profile and z = (zω)ω∈Ω ∈ U . The support of z in U is

the set

SU(z) :=

{
s ∈ S : ∀z′ ∈ U,

∑
ω

sωzω >
∑
ω

sωz
′
ω

}
(9)

Definition 24. Let U be a utility profile. For each z ∈ U and s ∈ SU(z), let H(z, s) :=

{λ ∈ RΩ : s · (λ− z) ≤ 0}. The support polytope of z in U , denoted T (z, U), is defined as

T (z, U) :=
⋂

s∈SU (z)

H(z, s). (10)

The polytope of U , denoted T (U), is given by

T (U) :=
⋂
z∈U

T (z, U). (11)

A polytope T ⊆ RΩ is a decision polytope if T = T (U) for some utility profile U ; it is a

k-polytope if T = T (U(A)) for some k-menu A.

Definition 25. Let T be a decision polytope. For each face F of T , let ηF ∈ SΩ
+ :=

{η ∈ RΩ
+ : ‖η‖ = 1} such that ηF is normal to the hyperplane associated with F . Let

N (T ) := {ηF : F is a face of T} denote the set of normals for T .
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Figure 11: Illustration of Lemma 17. The shaded region in (a) is T (A). Experiment σ = [s, t]
is constructed so that f is chosen at s and h is chosen at t. If the (utility coordinate) of
g is close to the face joining f and h, then cs(B) = f and ct(B) = h as well, where
B = {f, g, h}. How close g needs to be to the face depends on s and t (the dashed lines
in (a) are perpendicular to the gray lines in (c)). Thus, FA(σ′) = FB(σ′) for all σ′ in a
neighborhood of σ, so that A inherits a representation from B.

Figure 1 in the main text illustrates the relationship between a menu A, its utility profile

U(A), and the associated decision polytope and conic decomposition. Each act in a menu A

determines a coordinate U(f) in utility space, and the set U(A) of utility coordinates yields

a polytope T (U(A)) in utility space (in the figure, the shaded region is the polytope). An

act is chosen under some signal if and only if U(f) is an extreme point of the polytope. For

any such act f , the set of signals s where cs(A) = f is a cone in S. Faces of the polytope

correspond to signals making DM2 indifferent between two or more acts in A. Thus, any s

perpendicular to a face of the polytope lies on a hyperplane in signal space separating the

cones corresponding to two or more acts.

The next task is to show that every k-menu inherits a representation from some indepen-

dent `-menu, and that all independent menus share a representation. The proof is divided

into three parts.

Part 1: Every k-menu inherits a representation from some independent menu

Lemma 17 (Vertex Expansion). Let A be a k-menu. There is an act g /∈ A such that

B = A ∪ {g} is a (k + 1)-menu and A inherits a representation from B.

Proof. Let σ ∈ E be A-interior and choose 2ε > 0 such that B2ε is a 2ε-neighborhood of σ.

Then Bε is an ε-neighborhood where, for all σ′ ∈ Bε and all s ∈ σ′, the closure of Qs,ε is in

the interior of SA(f), where f = cs(A).

Let f ∈ A. For each σ′ ∈ Bε and each s ∈ σ, consider the half-space H(f, s) :=

{λ ∈ RΩ
+ : s · (λ − U(f)) ≤ 0}. This is the half-space (containing the origin) where the
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bounding hyperplane has normal s and passes through U(f). Let T ∗ be (the closure of)

the intersection over all H(f, s) where f ∈ A and s ∈ σ′ ∈ Bε. Notice that for each f , the

set Bε(f) := {s ∈ S : cs(A) = f and s ∈ σ′ ∈ Bε} is an (open) convex cone in S, and a

strict subset of int(SA(f)) by our choice of ε. Thus, Bε(f) and Bε(f ′) are strictly separated

whenever f 6= f ′, and therefore T (A) ( T ∗. Pick any point u∗ ∈ [T ∗\T (A)] ∩ RΩ
+ and let

g ∈ F such that U(g) = u∗. Then B = A ∪ {g} is the desired menu.

To see why A and B share a representation, note that (by construction) cs(A) = cs(B) for

all s ∈ σ′ ∈ Bε. Hence, FA(σ′) = FB(σ′) whenever σ′ ∈ Bε. Since dim(FA) = dim(FA(Bε))

and FA(Bε) = FB(Bε) ⊆ FB, it follows that %A inherits a representation from %B.

Lemma 18. Let A be a k-menu. There exists an independent menu B such that A inherits

a representation from B.

Proof. Fix an A-interior experiment σ and a neighborhood Bε of the form used in the proof

of Lemma 17. It is easy to see that a similar argument can be used to add N additional

vertices to the region T ∗\T (A) to yield a (k+N)-polytope. Moreover, these vertices can be

chosen so that for each state ω, the ω coordinates yield N distinct, interior utility values.

We are free to pick any N lotteries p1
ω, . . . , p

N
ω yielding these utility values. Clearly, these

can be chosen to form an affinely independent set. Now let f i = (piω)ω∈Ω ∈ F , and let

B = A ∪ {f 1, . . . , fN}.

Part 2: Oriented translations share a representation

Definition 26. Let A and B be independent menus. Then B is a translation of A if there

exists λ∗ ∈ RΩ such that T (B) = T (A)+λ∗ := {λ+λ∗ : λ ∈ T (A)}. The notation B = A+λ∗

means T (B) = T (A) + λ∗.

Lemma 19. If B = A+ λ∗, then:

(i) The map ψ : U(A) → U(B) given by ψ(z) := z + λ∗ is a bijection. Hence, there is a

bijection ψ : A→ B where ψ(f) denotes the unique g ∈ B such that U(g) = U(f) +λ∗.

(ii) C(B) = C(A).

Proof. Part (i) is clear. For part (ii), observe that s ∈ SA(f) if and only if∑
ω

sωu(fω) >
∑
ω

sωu(gω)

⇔
∑
ω

sω[µωu(fω) + λ∗ω] >
∑
ω

sω[µωu(gω) + λ∗ω]

⇔s ∈ SB(ψ(f))
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It follows that C(B) = C(A).

Definition 27. Suppose B is a translation of A, and let ψ : A → B denote the associated

bijection (Lemma 19). The affine path from f to ψ(f) is the map α 7→ fα := (1−α)f+αψ(f)

for α ∈ [0, 1] and the affine path from A to B is the map α 7→ Aα := {fα : f ∈ A} for

α ∈ [0, 1].

Definition 28. A bijection ϕ : P → Q between to sets of N lotteries is oriented if

(i) For all p, p′ ∈ P , u(p) > u(p′) implies u(ϕ(p)) > u(ϕ(p′)), and

(ii) For each α ∈ [0, 1], the set {(1− α)p+ αϕ(p) : p ∈ P} is affinely independent.

Independent menus A and B are oriented if B is a translation of A and, for each ω, the

map ϕω : Aω → Bω given by ϕω(fω) := ψ(f)ω is oriented, where Aω := {fω : f ∈ A},
Bω := {gω : g ∈ B}, and ψ : A→ B is the associated bijection (Lemma 19).

Figure 3 in the main text illustrates the concept of orientedness. Note that not all

translations B = A+λ∗ are oriented; in fact, it is possible to construct menus A and B such

that U(A) = U(B) (so that B is trivially a translation of A) but where A and B are not

oriented, so that even T (A) = T (B) is not enough to guarantee that A and B are oriented.

So, some care is needed when applying the following lemma:

Lemma 20. If A and B are oriented menus, then A and B share a representation.

Proof. Since A and B are oriented, there is a λ∗ ∈ RΩ such that B = A+λ∗ and an associated

bijection ψ : A→ B (Lemma 19).

Consider the affine path associated with ψ (Definition 27), and note that for each α,

Aα = A+ αλ∗; that is, T (A∗) = T (A) + αλ∗.

Thus, every A-interior (B-interior) experiment σ is also Aα-interior. Pick such a σ and

a corresponding neighborhood Bε, and let fα := FAα(σ). Importantly, FAα(Bε) contains

a full-dimensional subset of F because Aα is an independent menu (since A and B are

oriented).

For every α, fα is in the interior of FAα(Bε). Let δ(α) > 0 denote the radius of the

largest open ball around fα contained in FAα(Bε); call this ball Bα. Clearly, fα and δ(α)

are continuous in α. Therefore δ∗ = minα δ(α) is well-defined.

Now construct a finite sequence α(0), α(1), . . . , α(I) such that α(0) = 0, α(I) = 1, and

d(fα(i), fα(i−1)) < δ∗/2 for all i = 1, . . . , I, where d denotes the standard Euclidean metric.

This can be done because fα is continuous in α. Notice that fα(i) ∈ Bα(i−1) for all i = 1, . . . , I.

Thus, Bα(i) and Bα(i−1) intersect in a full-dimensional region, so that Aα(i) and Aα(i−1) share

a representation. Hence, A and B share a representation.
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Figure 12: Illustration of Lemma 21. The shaded region in (a) is T (A). T ′ is formed
by clipping off the region above the dashed line, effectively replacing coordinate g with
coordinates g1 and g2. The region in signal space where g is chosen from A = {f, g, h} is
divided into regions for g1 and g2 in menu B = {f, g1, g2, h} (in this example, the dashed
line is orthogonal to e). If the acts yielding utility coordinates g1 and g2 are sufficiently close
to g, then A-interior experiments σ yield induced acts FA(σ) and FB(σ) that are close to
each other.

Part 3: Independent menus share a representation

Lemma 21 (Face Expansion). Let A be an independent menu and suppose N = N (A)∪{λ}
for some λ ∈ SΩ

+. Then there is an independent menu B such that:

(i) N (B) = N

(ii) A and B share a representation.

Proof. Fix an A-interior experiment σ and an ε-neighborhood Bε around σ. Without loss

of generality, no s ∈ σ is of the form s = γλ for any γ > 0 (if necessary, choose some

other σ′ ∈ Bε and redefine σ to be σ′). Let f ∗ := FA(σ). Since A is independent, the set

{FA(σ′) : σ′ ∈ Bε} contains a ball of radius δ around f ∗ for some δ > 0.

Let H := {λ′ ∈ RΩ : λ · λ′ = ζ} denote the (unique) hyperplane with normal λ that

intersects the boundary (but not the interior) of T (A). The half-space H∗(ζ) := {λ′ ∈ RΩ :

λ ·λ′ ≤ ζ} below H contains T (A). Shifting H∗ toward the origin by a small amount (that is,

takingH∗(ζ ′) with ζ ′ < ζ) and intersecting with T (A) yields a new decision polytope T ′ where

one or more vertices of T (A) are split into multiple vertices. This means that for at least one

f ∈ A, the vertex zf = U(f) ∈ T (A) is split into vertices zf1 , . . . , zf
n

in T ′, and the set SA(f)

is divided into convex cones S(f i) ⊆ SA(f) where S(f i) := {s ∈ S : s · zf i > s · z ∀z′ 6= zf
i}.

By construction, T ′ has a face with normal λ. By letting ζ ′ → ζ, T ′ converges to T (A)

(in the Hausdorff metric). Thus, if the vertex zf ∈ T (A) corresponding to some f ∈ A is

split into zf1 , . . . , zf
n

in T ′, the coordinates zf
i

each converge to zf as ζ ′ → ζ. Therefore,
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acts f i such that U(f i) = zf
i

can be chosen such that f i → f as ζ ′ → ζ. Moreover, the acts

corresponding to new vertices can be chosen so that the resulting menu B is independent

(perturb the constituent lotteries along indifference curves for u if necessary).

Thus, there is a ζ ′ near ζ for which the corresponding menu B satisfies d(f ∗, FB(σ)) < δ;

that is, FB(σ) is in the interior of the ball of radius δ around f ∗. Since B is independent, FB

contains a ball of radius δ′ around FB(σ) for some δ′ > 0. Thus, dim(FA ∩ FB) = dim(F ),

so that A and B share a representation.

Lemma 22. Suppose A is a k-menu and B ⊆ A such that ce(A) ∈ B. There exists an

experiment σ such that cs(A) ∈ B for all s ∈ σ. Moreover, σ may be chosen so that for each

f ∈ B, σ contains a signal sf such that cs
f
(A) = B.

Proof. Let f e ∈ B denote the act satisfying ce(A) ∈ B. For each f ∈ B\f e, pick sf such

that cs
f
(A) = f ; such sf exist because A is a k-menu. Let s :=

∑
f∈B\fe s

f , and choose

α ∈ (0, 1) such that e− αs ∈ SA(f e). Such an α exists because for small enough α, e− αs
is close to e ∈ SA(f e), which is a full-dimensional subset of S = [0, 1]Ω\0. Finally, let

σ = {αsf : f ∈ B\f e} ∪ {e − αs}. Since cλt = ct for all λ > 0 such that λt ∈ S, it follows

that σ is a well-defined experiment satisfying all desired properties.

Lemma 23. Suppose U is a k-utility profile and U ′ is an `-utility profile such that T = T (U)

and T ′ = T (U ′) satisfy 1
W
e ∈ N (T )∩N (T ′). For each choice of A and B such that U = U(A)

and U ′ = U(B), there exists an N-utility profile U∗ and a λ ∈ RΩ such that:

(i) U ∪ U∗ is a (k +N)-utility profile and U ′ ∪ (U∗ + λ) is a (`+N)-utility profile

(ii) There is a z ∈ U∗ such that e ∈ SU∪U∗(z) and e ∈ SU ′∪(U∗+λ)(z + λ)

(iii) If U∗ = U(A∗) and U∗+λ = U(B∗), then A inherits a representation from A∪A∗ and

B inherits a representation from B ∪B∗.

Proof. Let A and B satisfy U = U(A) and U ′ = U(B). Choose an A-interior experiment σ

and a corresponding neighborhood Bε, and a B-interior σ′ with neighborhood Bε′ . As in the

proof of Lemma 17, the half-spaces corresponding to signals s ∈ σ̂ ∈ Bε passing through the

point U(f s) (where f s = cs(A)) intersect to form a space T ∗(A) such that T (A) ⊆ T ∗(A).

Moreover, T ∗(A)\T (A) contains a full-dimensional subset of RΩ near the face of T (A) with

normal e because every s ∈ σ̂ ∈ Bε is bounded away from e. In other words, T ∗(A)\T (A)

contains a full-dimensional subset of the region above the hyperplane corresponding to this

face. A similar argument yields a region T ∗(B) for which analogous statements hold.

Thus, there is a δ > 0 such that both T ∗(A)\T (A) and T ∗(B)\T (B) contain an open ball

of radius δ. Letting DA denote such a ball in T ∗(A)\T (A) and DB the ball in T ∗(B)\T (B),

it follows that DB = DA + λ for some λ ∈ RΩ.
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The profile U∗ is constructed as follows. First, pick a point z1 ∈ DA. Then z1 +λ ∈ DB.

By our choice of DA and DB, we have that T (U ∪ {z1}) is a (k + 1)-polytope such that

e ∈ SU∪{z1}(z1); that is, if some act f 1 satisfies U(f 1) = z1, then ce(A ∪ {f 1}) = f 1. Since

this is a strict preference, there is in fact a full-dimensional, convex set of signals s such

that cs(A ∪ {f 1}) = f 1, and e belongs to the interior of this set. Similar statements hold

for B ∪ {g1} for any g1 such that U(g1) = z + λ. Therefore, there is a full-dimension set of

signals s such that cs(A ∪ {f 1}) = f 1 and cs(B ∪ {g1}) = g1. Call the set of all such s the

support of z1.

We now proceed by induction. Suppose U∗ = {z1, . . . , zn} ⊆ DA such that each z ∈ U∗

has full-dimensional support. That is, for any A∗ such that U(A∗) = U∗ and each f ∈ A∗, the

set Sz = SA∪A
∗
(f)∩SB∪(A∗+λ)(g) has full dimension, where g ∈ B∗ satisfies U(g) = U(f)+λ.

Pick an s in the interior of Sz such that sz 6= e and consider the hyperplane H(s; z) with

normal s passing through z. Now pick a point zn+1 ∈ H(s; z)\z; if zn+1 is sufficiently close to

z, then zn+1 ∈ DA, T (U∪U∗∪{zn+1}) is a (k+n+1)-polytope, and T (U ′∪(U∗∪{zn+1}+λ))

is an (`+ n+ 1)-polytope. Moreover, zn+1 has full dimensional support.

The resulting set U∗ = {z1, . . . , zN} clearly satisfies (i) and (ii). For (iii), note that our

original choice of DA and DB guarantees that for all s ∈ σ̂ ∈ Bε, cs(A ∪ A∗) = cs(A) and

s′ ∈ σ̂′ ∈ Bε′ implies cs
′
(B ∪ B∗) = cs

′
(B). Thus, FA(Bε) ⊆ FA∪A∗ and FB(Bε) ⊆ FB∪B∗ ,

so that dim(FA) ≤ dim(FA∪A∗) and dim(FB) ≤ dim(FB∪B∗).

Lemma 24. Suppose U,U ′ ⊆ (0, 1) are sets of cardinality N . There exist sets P,Q ⊆ ∆X

and a bijection ϕ : P → Q such that

(i) U = {u(p) : p ∈ P} and U ′ = {u(q) : q ∈ Q}, and

(ii) ϕ is oriented.

Proof. Figure 13 illustrates the idea of the proof. Consider the indifference curves (hyper-

planes) in ∆X corresponding to the utilities in U ∪ U ′. There is an edge E of ∆X such

that each of these planes intersects the (relative) interior of E. Specifically, E is any edge

connecting lotteries δb and δw for any choice of b, w ∈ X such that u(b) ≥ u(x) ≥ u(w) for all

x ∈ X. Since each utility level is interior, it can be expressed as a non-degenerate mixture

of u(b) and u(w), forcing the associated hyperplane to intersect the relative interior of E.

Parallel to this edge is an interior line L passing through (the interior of) each hyperplane,

so that in fact there is an ε > 0 such that every parallel ε perturbation of L passes through

each hyperplane. Let B ⊆ ∆X denote the region spanned by these perturbations; clearly,

B has dimension equal to that of ∆X (namely, N − 1).

Now pick N − 1 lines L1, . . . , LN−1 in B, each parallel to L, such that the convex hull of

{L1, . . . , LN−1} has dimension N − 1. Rank the numbers in ui ∈ U so that u1 > u2 > . . . >
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(a) Utility Levels

L1

L2

(b) P (blue dots) and Q
(red dots)

(c) Pα, α = 0.5

Figure 13: Illustration of Lemma 24. The solid (blue) lines are the utility levels for U , and
the dotted (red) lines are utility levels for U ′. The shaded region in (a) is the region B ⊆ ∆X
referenced in the proof. With this construction, every set Pα is affinely independent.

uN . For i = 1, . . . , N − 1, let pi be the (unique) intersection of Li and the indifference plane

for utility ui, and let pN be the unique intersection of LN−1 with the indifference plane for

utility uN . Observe that {p1, . . . , pN−1} lie on a hyperplane H in ∆X and that pN is not in

the affine hull of H because LN−1 passes through H at a single point (pN−1) while pN lies

at a different point on LN−1. Thus, P = {p1, . . . , pN} is affinely independent.

Using the same lines L1, . . . , LN−1 and the same rank-based construction for U ′ yields an

affinely independent set Q = {q1, . . . , qN} where u(q1) > . . . > u(qN).

Now consider Pα := {(1−α)pi+αqi : i = 1, . . . , N}. Observe that (1−α)u(pi)+αu(qi) >

(1−α)u(pi+1)+αu(qi+1) for all i = 1, . . . , N−1 because u(pi) > u(pi+1) and u(qi) > u(qi+1).

Notice also that (1− α)pi + αqi is on line Li (i = 1, . . . , N − 1) and (1− α)pN + αqN is on

LN−1. Thus, by the same argument, Pα is affinely independent. Hence, the map ϕ : P → Q

given by ϕ(pi) = qi (i = 1, . . . , N) is oriented.

Lemma 25. If A and B are independent, then A and B share a representation.

Proof. By Lemma 21, we may assume that e ∈ N (A) and e ∈ N (B). Then, by Lemma

23, there is a utility profile U and a λ ∈ RΩ such that if U = U(A∗) and U ′ := U + λ =

U(B∗), then A and A′ := A ∪ A∗ share a representation, and B and B′ := B ∪ B∗ share

a representation. In fact, by Lemma 22, A′ shares a representation with A∗ provided A∗

is independent. Similarly, B′ shares a representation with B∗ provided B∗ is independent.

Therefore, it will suffice to find independent menus A∗ and B∗ such that U = U(A∗),

U ′ = U(B∗), and such that A∗ and B∗ share a representation.

To do so, choose a state ω and apply Lemma 24 to the sets Uω := {zω : z ∈ U} and U ′ω :=

{z′ω : z′ ∈ U ′} to get affinely independent sets Pω := {pzω : z ∈ U} and Qω := {qz′ω : z′ ∈ U ′}
such that u(pzω) = zω and u(qz

′
ω ) = z′ω for all z ∈ U and z′ ∈ U ′ (if necessary, apply a small

perturbation to U and U ′ in order to get N distinct utility values in Uω for each ω, and N
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distinct utility values in U ′ω for all ω). Repeating this for each ω yields acts f z := (pzω)ω∈Ω and

gz
′
:= (qz

′
ω )ω∈Ω for each z ∈ U and z′ ∈ U ′. Then A∗ := {f z : z ∈ U} and B∗ := {gz′ : z′ ∈ U ′}

are oriented, so that by Lemma 20, A∗ and B∗ share a representation.

Lemma 26. There is a unique, linear L∗ : F → R such that, for all k-menus A, V A(σ) :=

L∗(FA(σ)) represents %A for all σ ∈ E∗(A).

Proof. By Lemma 25, all independent menus share a representation. This means there is a

unique linear % on F that agrees with each relation %A. This % also agrees with %A since

every k-menu inherits a representation from an independent menu (Lemma 18). To construct

L∗, choose any independent menu A and consider the linear representation V A (Lemma 4)

restricted to the domain FA. Since FA has full dimension, V A has a unique linear extension

to F . Take L∗ to be this extension.

Proof of Theorem 1

Let A be an arbitrary menu and consider the utility profile U(A). If U(A) consists of a

single point, or if E∗(A) = ∅, there is nothing to prove. Otherwise, let σ, σ′ ∈ E∗(A). Then

there is a submenu A′ ⊆ A that is a k-menu (for some k) such that FA(σ) = FA′(σ) and

FA(σ′) = FA′(σ′). By the Consistency Axiom (A7), σ %A σ′ if and only if σ %A′ σ′. Hence,

any linear representation for E∗(A′) gives a linear representation for E∗(A). In particular, if

some pair (ν, v) gives an expected utility representation on some (any) independent menu

A, then it gives a linear representation for E∗(B) for all menus B (Lemma 14).

The only remaining task is to pin down the desired uniqueness properties for ν and

v. First, note that by the Non-Degeneracy axiom, the (unique) linear representation L∗ of

Lemma 26 must be non-constant; otherwise, by the previous paragraph, every %A assigns

indifference among all experiments in E∗(A). Thus, by Lemma 12, %A∗ (uniquely) extends

to % on F (where A∗ is the symmetric menu constructed in Step 2), so that % satisfies

all of the Anscombe-Aumann axioms, including Non-Degeneracy. Thus, % has an expected

utility representation with a unique ν and a unique (up to positive affine transformation)

utility index v. Since L∗ is a linear representation for %, it follows that the expected utility

representation holds for all menus %A on E∗(A).

B Proof of Theorem 2

Axioms B1–B5 imply that for each s, cs is rationalized by an Anscombe-Aumann repre-

sentation with prior µs and utility index us. Axiom B4 implies that us is a positive affine

58



transformation of us
′

for all s, s′, so we may assume us = u for all s. That is, every %s has

a representation of the form

f %s g ⇔
∑
ω

µsωu(fω) ≥
∑
ω

µsωu(gω)

We will refer to this as the expected utility representation for %s. To complete the proof, we

demonstrate existence of a (full support) µ such that, for all s, µs is the Bayesian posterior

induced by prior µ and signal s.

Lemma 27. If sω > 0, then µsω > 0.

Proof. If µsω = 0, then

u(p)µsω +
∑
ω′ 6=ω

u(hω′)µ
s
ω′ = u(q)µsω +

∑
ω′ 6=ω

u(hω′)µ
s
ω′

for all p, q ∈ ∆(X) and all h ∈ F . Thus p[ω]h ∼s q[ω]h, so that p[ω′]h ∼s q[ω′]h (for all ω′)

by Axiom B4. Pick ω′ such that µsω′ > 0. Then u(p)µsω′ = u(q)µsω′ , forcing u(p) = u(q). This

holds for all p, q ∈ ∆(X), so that f ∼s g for all f, g ∈ F . This contradicts Axiom B2.

For an ordered pair of states E = [ω, ω′] (where ω 6= ω′), lotteries p, q, and any act h,

let (p, q)Eh denote the act f such that fω = p, fω′ = q, and fω̂ = hω̂ for all ω̂ ∈ Ω\{ω, ω′}.
Recall that e ∈ S denotes the signal s where sω = 1 for all ω.

Lemma 28. For every E = [ω, ω′], there are acts f, g, h such that fEh ∼e gEh, u(gω) −
u(fω) > 0, and u(fω′)− u(gω′) > 0.

Proof. By Lemma 27, µeω
µe
ω′

:= δ is well-defined. Suppose δ ≥ 1. Let p, p′ be interior such

that u(p) − u(p′) > 0. Take fω′ = p, gω′ = p′, gω = p, and fω = αp + (1 − α)p′. Then

u(gω)− u(fω) > 0 and u(fω′)− u(gω′) > 0 for all α ∈ [0, 1). Moreover,

u(fω′)− u(gω′)

u(gω)− u(fω)
=

u(p)− u(p′)

u(p)− αu(p)− (1− α)u(p′)
=

1

1− α

Now let α = δ−1
δ

, so that 1
1−α = δ = µeω

µe
ω′

. Since δ ≥ 1, we have α ∈ [0, 1). Thus,

u(fω′)− u(gω′)

u(gω)− u(fω)
=
µeω
µeω′

so that

u(fω)µeω + u(fω′)µ
e
ω′ = u(gω)µeω + u(gω′)µ

e
ω′ .
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Therefore fEh ∼e gEh for all h. The proof for δ ≤ 1 is similar.

Lemma 29. If f ∼s g, α ∈ (0, 1) and t = sE(αs), then (αf + (1 − α)h)Ef ∼t (αg + (1 −
α)h)Eg for all h.

Proof. First, suppose toward a contradiction that

(αf + (1− α)h)Ef �t (αg + (1− α)h)Eg (12)

for some h. By the expected utility representation for %t, (12) holds for every choice of h.

In particular, h = f gives

f �t (αg + (1− α)f)Eg (13)

Take F = Ω\E and let t′ = tF (αt). Notice that t′ = (αt)Et = (αs)E(αs) = αs. Applying

Axiom B5 to (13) with F and t′ gives

(αf + (1− α)h′)Ff �αs
[
α[(αg + (1− α)f)Eg] + (1− α)h′

]
F
[
(αg + (1− α)f)Eg

]
∀h′

Subbing in h′ = f yields

f �αs
[
(αg + (1− α)f)Eg

]
E
[
α[(αg + (1− α)f)Eg] + (1− α)f

]
= [αg + (1− α)f ]E[αg + (1− α)f ]

= αg + (1− α)f

By Continuity (B3), %αs = %s. Thus, f �s αg + (1 − α)f . Since %s has an expected

utility representation, this contradicts the original assumption that f ∼s g. Thus, (αg+(1−
α)h)Eg %t (αf+(1−α)h)Ef for all h. A similar argument establishes (αf+(1−α)h)Ef %t

(αg + (1− α)h)Eg for all h.

Lemma 30. Let E = [ω, ω′] and s ∈ S such that sω > 0 or sω′ > 0. Then fEh ∼e gEh
implies (sω′gω + (1− sω′)fω, gω′)Eh ∼s (fω, sωfω′ + (1− sω)gω′)Eh.

Proof. Let α = sω and β = sω′ . Consider E ′ = Ω\ω and t′ = eE ′(αs) = (α, 1)[ω, ω′]e.

Lemma 29 implies

[α(fEh) + (1− α)ĥ]E ′[fEh] ∼t′ [α(gEh) + (1− α)ĥ]E ′[gEh] ∀ĥ

Equivalently, for all ĥ,

(fω, αfω′ + (1−α)ĥω′)[ω, ω
′](αh+ (1−α)ĥ) ∼t′ (gω, αgω′ + (1−α)ĥω′)[ω, ω

′](αh+ (1−α)ĥ)
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Subbing in ĥ = g gives

(fω, αfω′ + (1− α)gω′)[ω, ω
′](αh+ (1− α)g) ∼t′ (gω, gω′)[ω, ω

′](αh+ (1− α)g) (14)

Using the expected utility representation for %t′ , (14) clearly holds if, on the complement of

E, αh+ (1− α)g is replaced with any act. Thus,

(fω, αfω′ + (1− α)gω′)Eh ∼t
′
gEh (15)

Now take E ′′ = Ω\ω′ and let t′′ = t′E ′′(βt′) = (α, β)[ω, ω′]e. Applying Lemma 29 to (15),

E ′′, and t′′ gives g̃(ĥ) ∼t′′ f̃(ĥ) for all ĥ, where

g̃(ĥ) := (β(gEh) + (1− β)ĥ)E ′′(gEh)

= (gEh)[ω′](β(gEh) + (1− β)ĥ)

= (βgω + (1− β)ĥω, gω′)E(βh+ (1− β)ĥ)

and

f̃(ĥ) :=
[
β[(fω, αfω′ + (1− α)gω′)Eh] + (1− β)ĥ

]
E ′′
[
(fω, αfω′ + (1− α)gω′)Eh

]
= (αfω′ + (1− α)gω′)[ω

′]
[
β[(fω, αfω′ + (1− α)gω′)Eh] + (1− β)ĥ

]
= (βfω + (1− β)ĥω, αfω′ + (1− α)gω′)E(βh+ (1− β)ĥ)

Thus, substituting ĥ = f into g̃(ĥ) ∼t′′ f̃(ĥ) yields

(βgω + (1− β)fω, gω′)E(βh+ (1− β)f) ∼t′′ (fω, αfω′ + (1− α)gω′)E(βh+ (1− β)f) (16)

Using the expected utility representation, (16) holds if, on Ec, βh+(1−β)f is replaced with

any other act. Thus,

(βgω + (1− β)fω, gω′)Eh ∼t
′′

(fω, αfω′ + (1− α)gω′)Eh (17)

Since α = sω and β = sω′ , the desired acts are indifferent under signal t′′ = (α, β)Ee = sEe.

If Ω = {ω, ω′}, we are done. Otherwise, there is at least one ω̂ 6= ω, ω′. We will show that

the indifference holds for all signals of the form sEt where tω̂ > 0 for all ω̂ 6= ω, ω′. Then, a

continuity argument will establish indifference under signal s.

Suppose tω̂ > 0. Let F = Ω\ω̂ and t̂ = t′′F (tω̂t
′′) = (α, β, tω̂)[ω, ω′, ω̂]e. Applying Lemma
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29 to (17) with F and t̂ gives f̂(ĥ) ∼t̂ ĝ(ĥ) for all ĥ, where

f̂(ĥ) :=
[
tω̂[(βgω + (1− β)fω, gω′)Eh] + (1− tω̂)ĥ

]
F
[
(βgω + (1− β)fω, gω′)Eh

]
= hω̂[ω̂]

[(
tω̂(βgω + (1− β)fω) + (1− tω̂)ĥω, tω̂gω′ + (1− tω̂)ĥω′

)
E
(
tω̂h+ (1− tω̂)ĥ

)]
and

ĝ(ĥ) :=
[
tω̂[(fω, αfω′ + (1− α)gω′)Eh] + (1− tω̂)ĥ

]
F
[
(fω, αfω′ + (1− α)gω′)Eh

]
= hω̂[ω̂]

[(
tω̂fω + (1− tω̂)ĥω, tω̂(αfω′ + (1− α)gω′) + (1− tω̂)ĥω′

)
E
(
tω̂h+ (1− tω̂)ĥ

)]
Using these expressions together with the expected utility representation for %t̂ yields

tω̂µ
t̂
ω[βu(gω) + (1− β)u(fω)] + tω̂µ

t̂
ω′u(gω′) = tω̂µ

t̂
ωu(fω) + tω̂µ

t̂
ω′ [αu(fω′) + (1− α)u(gω′)]

Since tω̂ > 0, we may cancel tω̂ and add
∑

ω′′ 6=ω,ω′ µ
t̂
ω′′u(hω′′) to both sides. Thus

(βgω + (1− β)fω, gω′)Eh ∼t̂ (fω, αfω′ + (1− α)gω′)Eh

So, the desired indifference holds at signal t̂ = (α, β, tω̂)[ω, ω′, ω̂]e. If there exists some

ω∗ ∈ Ω\{ω, ω′, ω̂}, apply the above argument again, this time with F = Ω\ω∗ and t∗ =

t̂F (tω∗ t̂) = (α, β, tω̂, tω∗)[ω, ω
′, ω̂, ω∗]e, where tω∗ > 0. Clearly, repeating this procedure

yields the desired indifference for all signals of the form sEt where tω′′ > 0 for all ω′′ 6= ω, ω′.

To see that (sω′gω + (1− sω′)fω, gω′)Eh ∼s (fω, sωfω′ + (1− sω)gω′)Eh, suppose that one

of these acts is strictly preferred over the other at s. By Axiom B3, there is a neighborhood

of s such that every signal in the neighborhood yields the same strict ranking. But, as is

easily verified, every neighborhood of s in the given topology contains a signal of the form

sEt where tω′′ > 0 for all ω′′ 6= ω, ω′. As shown above, such signals yield indifference between

the two acts. Thus, indifference must hold at s.

Lemma 31. If sω = 0, then µsω = 0.

Proof. Since sω = 0 and s ∈ S, there is a state ω′ 6= ω such that sω′ > 0. Let E = [ω, ω′].

By Lemma 28, there are acts f, g, h such that fEh ∼e gEh and u(gω)− u(fω) > 0. Lemma

30 implies

µsω[sω′u(gω) + (1− sω′)u(fω)] + µsω′u(gω′) = µsωu(fω) + µsω′ [sωu(fω′) + (1− sω)u(gω′)]
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and so

µsωsω′ [u(gω)− u(fω)] = µsω′sω[u(fω′)− u(gω′)].

Substituting sω = 0 gives

µsωsω′ [u(gω)− u(fω)] = 0.

Since sω′ > 0 and u(gω)− u(fω) > 0, this implies µsω = 0.

Lemma 32. If sω > 0 and sω′ > 0, then µsω
µs
ω′

= sωµeω
sω′µ

e
ω′

.

Proof. Let E = [ω, ω′]. By Lemma 28, there are acts f, g, h such that fEh ∼e gEh, u(gω)−
u(fω) > 0, and u(fω′) − u(gω′) > 0. Moreover, the expected utility representation for %e

implies

u(fω)µeω + u(fω′)µ
e
ω′ = u(gω)µeω + u(gω′)µ

e
ω′

Since µe has full support (Lemma 27), this implies

u(fω′)− u(gω′)

u(gω)− u(fω)
=
µeω
µeω′

As in the proof of Lemma 31, Lemma 30 implies

µsωsω′ [u(gω)− u(fω)] = µsω′sω[u(fω′)− u(gω′)].

Since sω > 0 and sω′ > 0, Lemma 27 implies µsω > 0 and µsω′ > 0. Thus

µsω
µsω′

=
sω
sω′

u(fω′)− u(gω′)

u(gω)− u(fω)

=
sω
sω′

µeω
µeω′

,

as desired.

Proof of Theorem 2

To prove the theorem, let s ∈ S and observe that by Lemmas 27 and 31, µsω = 0 if and only

if sω = 0, as prescribed by Bayes’ rule. Combined with Lemma 32, this implies that the

ratio µsω
µs
ω′

is pinned down for every choice of ω′ such that sω′ > 0.

Notice that for any λ > 0, λµs := (λµsω)ω∈Ω yields the same ratios. Thus, µs is the unique

probability distribution on the ray passing through
(
sωµeω
sω′µ

e
ω′

)
ω∈Ω

for any choice of ω′ such that

sω′ > 0. In other words, the ratios sωµeω
sω′µ

e
ω′

(sω′ > 0) pin down a point in projective space,

which corresponds to a ray through the origin in RΩ. This ray intersects the probability
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simplex at a unique point. Since the probability distribution given by µsω = sωµeω∑
ω′ sω′µ

e
ω′

is a

point on this ray, it must coincide with µs. Hence, µs is the Bayesian posterior for signal s

and prior µ := µe. This completes the proof.

C Proofs for Section 5

Lemma 33. Let E,F ( Ω, E 6= F , and s, t ∈ S. Then:

(i) If s and t are EF -equivalent, then µs(E) > µs(F )⇒ µt(E) > µt(F ).

(ii) If µs(E) > µs(F ) and µt(E) > µt(F ), then s and t are EF -equivalent.

Proof of (i). Suppose s and t are EF -equivalent. First, we prove that µs(E) > µs(F ) ⇒
µt(E) ≥ µt(F ); the proof is by contradiction.

Suppose µs(E) > µs(F ) and µt(F ) > µt(E). Choose p, q ∈ ∆X such that u(p) > u(q)

and v(p) 6= v(q). Let A = {pEq, pFq}. We will show that for all ε > 0, there exist s′ ∈ N ε(s),

t′ ∈ N ε(t) and an experiment σ with s′, t′ ∈ σ such that σ 6∼A σs′+t′ . In particular, take ε > 0

small enough so that µs
′
(E) > µs

′
(F ) and µt

′
(F ) > µt

′
(E) for all s′ ∈ N ε(s), t′ ∈ N ε(t).

For s′ ∈ N ε(s) and t′ ∈ N ε(t), let σ = [r′, s′, t′] (where r′ = e − s′ − t′), so that

σs
′+t′ = [r′, s′ + t′]. Assume that r′ 6= 0 (if r′ = 0, take σ = [s′, t′] instead; the proof for

this case is similar). By hypothesis, V A(σ) = V A(σs
′+t′). Abusing notation slightly, we may

write V A(σ) = V A(r′) + V A(s′) + V A(t′) where, for arbitrary signals ŝ,

V A(ŝ) :=
∑
ω∈Ω

ŝωνωv(f
ŝ

ω)

where f
ŝ ∈ ∆cŝ(A) is the act at ŝ that yields sender-preferred tie-breaking. Similarly, we may

write V A(σs
′+t′) = V A(r′) + V A(s′ + t′). Thus, σ ∼A σs′+t′ if and only if V A(s′) + V A(t′) =

V A(s′ + t′) (the same condition would hold if r′ = 0). Observe that

V A(s′) + V A(t′) =

[∑
ω∈E

s′ωνωv(p) +
∑
ω′∈Ec

s′ω′νω′v(q)

]
+

[∑
ω∈F

t′ωνωv(p) +
∑
ω′∈F c

tω′νω′v(q)

]

= v(p)

[∑
ω∈E

s′ωνω +
∑
ω∈F

t′ωνω

]
+ v(q)

[∑
ω′∈Ec

s′ω′νω′ +
∑
ω′∈F c

t′ω′νω′

]

Now consider V A(s′ + t′). There are three cases:
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(1) cs
′+t′(A) = pEq. This means µs

′+t′(E) > µs
′+t′(F ). Then

V A(s′ + t′) =
∑
ω∈E

(s′ω + t′ω)νωv(p) +
∑
ω′∈Ec

(s′ω′ + t′ω′)νω′v(q)

and σ ∼A σs′+t′ if and only if

v(p)

[∑
ω∈F

t′ωνω −
∑
ω∈E

t′ωνω

]
+ v(q)

[∑
ω′∈F c

t′ω′νω′ −
∑
ω′∈Ec

t′ω′νω′

]
= 0

⇔ v(p)
∑
ω∈F

t′ωνω + v(q)
∑
ω′∈F c

t′ω′νω′ = v(p)
∑
ω∈E

t′ωνω + v(q)
∑
ω′∈Ec

t′ω′νω′

In other words, DM1 must be indifferent between pEq and pFq at signal t′. Since

v(p) 6= v(q), this is equivalent to νt
′
(E) = νt

′
(F ); that is,

∑
ω∈E t

′
ωνω −

∑
ω∈F t

′
ωνω = 0.

There is a hyperplane (in S) of such t′. Clearly, then, N ε(t) contains a signal t′ that

is not on that hyperplane. Hence, for small enough ε, N ε(t) contains a t′ such that

σ 6∼A σs′+t′ .

(2) cs
′+t′(A) = pFq. This means µs

′+t′(F ) > µs
′+t′(E). Similar algebra to case (1) shows

that σ ∼A σs
′+t′ if and only if νs

′
(E) = νs

′
(F ). Hence, for all ε > 0 sufficiently small,

there exists s′ ∈ N ε(s) such that σ 6∼A σs′+t′ .

(3) cs
′+t′(A) = {pEq, pFq}. This means µs

′+t′(E) = µs
′+t′(F ). Clearly, small perturbations

of s′ and t′ yield µs
′+t′(E) 6= µs

′+t′(F ), bringing us to either case (1) or case (2).

Thus, in all cases, we have s′ ∈ N ε(s) and t′ ∈ N ε(t) such that σ 6∼A σs′+t′ for ε sufficiently

small, contradicting EF -equivalence.

We have shown that if s and t are EF -equivalent and µs(E) > µs(F ), then µt(E) ≥ µt(F ).

To establish that µt(E) > µt(F ), suppose toward a contradiction that µt(E) = µt(F ). Then

every neighborhood N ε(t) contains a signal t′ such that µt
′
(F ) > µt

′
(E). As shown above,

this implies that N ε(t) contains a t′ such that σ 6∼A σs+t′ for some EF -bet A and experiment

σ with s, t′ ∈ σ. This contradicts EF -equivalence of s and t. Thus, µt(E) > µt(F ).

Proof of (ii). Suppose µs(E) > µs(F ) and µt(E) > µt(F ), and let A = {pEq, pFq} be an

EF -menu. Then cs(A) = ct(A) = {f} for some f ∈ A. It follows immediately that σ ∼A σs+t

for all σ such that s, t ∈ σ. Thus, s and t are EF -equivalent.
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Proof of Proposition 1

Proof that (i) implies (ii). Suppose µ =
•

µ. Let s and t be EF -equivalent for some E and F .

By part (i) of Lemma 33, µs and µt give the same strict ranking of E and F . Since µ =
•

µ,

the same strict ranking is given by
•

µs and
•

µt. Thus, by part (ii) of Lemma 33, s and t are
•

EF -equivalent.

Clearly, (ii) implies (iii).

Proof that (iii) implies (i). First, let E,F ⊆ Ω satisfy E 6⊆ F and F 6⊆ E. Then there are

signals sE, sF ∈ S such that µs
E

(E) > µs
E

(F ) and µs
F

(F ) > µs
F

(E). For any set Z ⊆ S, let

clZ denote the closure of Z. By Lemma 33, we have

cl{t ∈ S : sE is EF -equivalent to t} = {t ∈ S : µt(E) ≥ µt(F )}

and

cl{t ∈ S : sF is EF -equivalent to t} = {t ∈ S : µt(F ) ≥ µt(E)}

Since EF -equivalence implies
•

EF -equivalence, it follows that

{t ∈ S : µt(E) ≥ µt(F )} = {t ∈ S :
•

µt(E) ≥ •

µt(F )}

and

{t ∈ S : µt(F ) ≥ µt(E)} = {t ∈ S :
•

µt(F ) ≥ •

µt(E)}

In particular,

H := {t ∈ S : µt(E) = µt(F )} = {t ∈ S :
•

µt(E) =
•

µt(F )}

Every t ∈ H satisfies the equation
∑

ω∈E tωµω −
∑

ω∈F tωµω = 0. Interpret this as a linear

equation in µ = (µω)ω∈Ω ∈ RΩ with coefficients given by t. Thus, every t ∈ H determines

a hyperplane H t of solutions µ. Since H is a hyperplane in S, we can find |Ω| − 1 linearly

independent vectors {t1, . . . , t|Ω|−1} ⊆ H. By linear independence, the corresponding hypler-

planes H ti (i = 1, . . . , |Ω| − 1) intersect to form a line passing through the origin. This line

must intersect ∆Ω at a unique point. Thus, µ =
•

µ.

Proof of Proposition 2

Proof that (i) implies (ii). Let A = {pEq, pFq} and suppose σ = [s, t] and σ′ = [s′, t′] are

equivalent experiments that neither %A nor
•

%A rank indifferent to e. Furthermore, suppose

σ ∼A σ′; we want to show that σ
•∼A σ′.
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Note that both DM1 and
•

DM1 must not be indifferent between p and q (that is, we

must have v(p) 6= v(q) and
•

v(p) 6= •

v(q)). Otherwise, both %A and
•

%A would rank σ and σ′

indifferent to e, regardless of the priors and preferences of DM2 and
•

DM2. We also must

have (without loss of generality) that µs(E) > µs(F ) and µt(E) < µt(F ); otherwise, %A

ranks σ indifferent to e.26 Similarly, µs
′

and µt
′

yield opposite strict rankings of events E

and F ; since σ and σ′ are equivalent, the rankings are
•

µs(E) >
•

µs(F ) and
•

µt(E) <
•

µt(F ).

It will be convenient to write σ′ in the form σ′ = [s + δ, t − δ], where δ ∈ RΩ. Clearly

such a δ exists.

Since σ ∼A σ′, we have V A(σ) = V A(σ′). We will use this equality to derive an equation

that depends only on ν and δ. Writing down formulas for V A(σ) and V A(σ′), in principle,

requires several cases depending on how u and v rank lotteries p and q. For our purposes,

it will be enough to assume that DM1 behaves as if pEq is chosen at s and s′ while pFq is

chosen at t and t′. This is so because if u(p) > u(q), then the specified acts are chosen at these

signals. If instead u(p) > u(q), then the opposite acts are chosen, but the derivation of our

equation is not affected by swapping the roles of p and q. If u(p) = u(q), then DM1 (through

sender-preferred tie-breaking) gets his most-preferred act at any signal. The assumption that

σ and σ′ are not ranked indifferent to e means that, in this case, different acts are chosen

at s and t under this tie-breaking criterion. Swapping these acts to correspond with DM1’s

(strict) ranking of p and q will not affect the algebraic derivation below.

So, suppose pEq is chosen at s and s′ while pFq is chosen at t and t′. Given this choice

rule, the induced acts, from the perspective of DM1, are

fAω (σ) =



sωp+ tωq if ω ∈ E\F

sωq + tωp if ω ∈ F\E

p if ω ∈ E ∩ F

q if ω ∈ Ec ∩ F c

and

fAω (σ′) =



(sω + δω)p+ (tω − δω)q if ω ∈ E\F

(sω + δω)q + (tω − δω)p if ω ∈ F\E

p if ω ∈ E ∩ F

q if ω ∈ Ec ∩ F c

26If µs and µt yield the same strict ranking of E and F , then cs(A) = ct(A) is a singleton and σ ∼A e. If
at least one of the rankings is an equality, then σ ∼A e by sender-preferred tie-breaking.
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Thus, we may write V A(σ) = Zv(p) + (1− Z)v(q), where

Z :=
∑

ω∈E\F

νωsω +
∑

ω∈F\E

νωtω +
∑

ω∈E∩F

νω

This follows from the fact that V A(σ) is the subjective expected utility of fA(σ) according

to prior ν and utility index v. Similarly, V A(σ′) = Z ′v(p) + (1− Z ′)v(q), where

Z ′ :=
∑

ω∈E\F

νω(sω + δω) +
∑

ω∈F\E

νω(tω − δω) +
∑

ω∈E∩F

νω

Notice that Z ′ = Z + Zδ, where

Zδ :=
∑

ω∈E\F

νωδω −
∑

ω∈F\E

νωδω

Now, straightforward algebra establishes that V A(σ) = V A(σ′)⇔ [v(p)−v(q)]Zδ = 0. Thus,

σ ∼A σ′ if and only if ∑
ω∈E\F

νωδω −
∑

ω∈F\E

νωδω = 0 (18)

This expression would hold even if the roles of p and q were reversed. Since ν =
•

ν, we may

substitute
•

ν in place of ν in expression (18) and perform the reverse derivation (observe that

all steps are equivalences) to get that
•

V A(σ) =
•

V A(σ′). Thus, σ
•∼A σ′.

Proof that (ii) implies (i). We prove the contrapositive statement. So, suppose ν 6= •

ν. Let

E ( Ω be nonempty and A = {pEq, pEcq} be a bet (take F = Ec) such that none of the

functions u,
•

u, v,
•

v rank p indifferent to q.27 We will find equivalent binary experiments σ, σ′

that neither %A nor
•

%A rank indifferent to e. These experiments will be ranked indifferent

by %A but not by
•

%A, thus establishing a violation of (ii).

Let s and t be interior signals (that is, 0 < sω, tω < 1 for all ω) such that s + t = e,

µs(E) > µs(Ec),
•

µs(E) >
•

µs(Ec), µt(E) < µt(Ec), and
•

µt(E) <
•

µt(Ec). This, too, is easy

to achieve. First, let ŝ be an indicator signal for E: sω = 1 for all ω ∈ E, sω = 0 for all

ω ∈ Ec. Similarly, let t̂ = e − ŝ be the indicator signal for Ec. Clearly, ŝ and t̂ satisfy

the inequalities above. Since the inequalities are strict, we may perturb ŝ and t̂ to obtain

interior signals s = ŝ + δ, t = t̂ − δ for some δ ∈ RΩ; for ‖δ‖ sufficiently small (and with

appropriate entries negative), s and t are well-defined signals and the above inequalities are

27This is easy to achieve: pick an interior lottery p, and then any q that does not lie on any indifference
curve through p according to any of the four functions. The four indifference curves occupy a set of measure
zero in ∆X, so there are plenty of such q.
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satisfied. Since s+ t = e, σ = [s, t] is a well-defined binary experiment.

Notice that σ ∼A e if and only if either∑
ω∈E

νωsω −
∑
ω∈Ec

νωsω = 0 or
∑
ω∈E

νωtω −
∑
ω∈Ec

νωtω = 0

This follows from straightforward algebra (the two cases correspond to whether pEq or qEp

is chosen by DM2 at signal e). Observe that if σ ∼A e, then arbitrarily small perturbations

of s and t will break the indifference. Similar statements hold with
•

ν in place of ν. So,

replacing s and t with such perturbations if necessary, we may assume that neither %A nor
•

%A rank σ indifferent to e.

Now let σ′ be an experiment of the form σ′ = [s + δ, t − δ] for some δ ∈ RΩ. When ‖δ‖
is sufficiently small, s + δ and t − δ are well-defined signals such that cs(A) = cs+δ(A) 6=
ct(A) = ct−δ(A). We need to choose δ such that (a) %A does not rank σ′ indifferent to e; (b)

σ ∼A σ′; (c)
•

%A does not rank σ′ indifferent to e; and (d)
•

%A does not rank σ indifferent to

σ′.

By the derivation in the first part of the proof, σ ∼A σ′ if and only if∑
ω∈E

νωδω −
∑
ω∈Ec

νωδω = 0 (19)

Given ν, this defines a hyperplane of points δ that satisfy (b) (subject, of course, to ‖δ‖
sufficiently small).

Observe that if σ ∼A σ′, then (since %A does not rank σ indifferent to e), we have∑
ω∈E

νω(sω + δω)−
∑
ω∈Ec

νω(sω + δω) =
∑
ω∈E

νωsω −
∑
ω∈Ec

νωsω +
∑
ω∈E

νωδω −
∑
ω∈Ec

νωδω

=
∑
ω∈E

νωsω −
∑
ω∈Ec

νωsω

6= 0

Similarly, one can derive
∑

ω∈E νω(tω − δω)−
∑

ω∈Ec νω(tω − δω) 6= 0. Thus, any δ satisfying

(19) (with ‖δ‖ sufficiently small) yields a σ′ satisfying conditions (a) and (b).

For condition (c), observe that σ′
•∼A e if and only if∑

ω∈E

•

νω(sω + δω)−
∑
ω∈Ec

•

νω(sω + δω) = 0 or
∑
ω∈E

•

νω(tω − δω)−
∑
ω∈Ec

•

νω(tω − δω) = 0

Again, this follows from straightforward algebra, and the two cases correspond to whether
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pEq or pEcq is chosen by
•

DM2 at signal e. The left-hand equation can be rewritten as:[∑
ω∈E

•

νωsω −
∑
ω∈Ec

•

νωsω

]
+

[∑
ω∈E

•

νωδω −
∑
ω∈Ec

•

νωδω

]
= 0

The first term is nonzero because
•

%A does not rank σ indifferent to e. Hence, the set of all

δ satisfying this equality is bounded away from δ = 0 (the solutions form a plane that does

not pass through the origin). Hence, for ‖δ‖ small, the equality is not satisfied. A similar

expression holds for the right-hand equation above (involving t). Thus, for ‖δ‖ sufficiently

small, condition (c) is satisfied.

For condition (d), observe that σ
•∼A σ′ requires∑

ω∈E

•

νωδω −
∑
ω∈Ec

•

νωδω = 0

Comparing this to (19), we see that δ must belong to the kernel of two linear functions;

specifically,

L : δ 7→
∑
ω∈E

νωδω −
∑
ω∈Ec

νωδω and
•

L : δ 7→
∑
ω∈E

•

νωδω −
∑
ω∈Ec

•

νωδω

However, since ν 6= •

ν and ν,
•

ν ∈ ∆Ω, no nonzero δ satisfies L(δ) = 0 =
•

L(δ). Intuitively,

L = 0 and
•

L = 0 define hyperplanes with normals ν and
•

ν, respectively. Since ν 6= •

ν but

ν,
•

ν ∈ ∆Ω, the normals lie on distinct rays through the origin and, therefore, the associated

hyperplanes only intersect at δ = 0. Hence, any nonzero δ with ‖δ‖ sufficiently small

satisfying (19) yields a σ′ such that (a)–(d) are satisfied. This completes the proof.

Proof of Theorem 4

Proof. We will prove that (ii) implies (i) (the converse is obvious).

By Propositions 1 and 2, we have µ =
•

µ and ν =
•

ν. Observe that if A is a (p, q)-

bet and v(p) = v(q), then (by sender-preferred tie-breaking) %A is degenerate. Conversely,

v(p) = v(q) if %A is degenerate for all (p, q)-bets A (again, by sender-preferred tie-breaking).

Thus, the indifference curves of v can be deduced from (%A)A∈A; in particular, for all lotteries

p, {q ∈ ∆X : v(p) = v(q)} = {q ∈ ∆X : ∀ (p, q)-bets A, %A is degenerate}. Since

(%A)A∈A = (
•

%A)A∈A, it follows that v and
•

v have the same indifference curves in ∆X.

Now observe that for any (p, q)-bet A, there exists σ such that σ∗ �A σ if and only

if v and u agree on the ranking of p and q (without loss of generality, v(p) > v(q) and

u(p) ≥ u(q)). Similarly, there exists σ such that σ �A σ∗ if and only if v and u disagree on
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the ranking of p and q (without loss of generality, v(p) > v(q) and u(q) > u(p)).

Thus, for any p, the sets {q ∈ ∆X : v and u agree on the ranking of p and q} and {q ∈
∆X : v and u disagree on the ranking of p and q} are revealed by (%A)A∈A. By linearity,

the indifference plane {q′ ∈ ∆X : u(p) = u(q′)} can be deduced from either set. In particular,

the agreement region is an intersection of two half-spaces in ∆X. One half-space is bounded

by the indifference curve (plane) for v through p, and the other is bounded by the indifference

plane for u through p. As argued above, these planes can be distinguished using DM1’s

preferences for information (the indifference curve for v through p is revealed by (p, q)-bets

A where %A is degenerate). Hence, the indifference curves of u are revealed by (%A)A∈A.

Since (%A)A∈A = (
•

%A)A∈A, it follows that u and
•

u have the same indifference curves.

Since the indifference curves of u are pinned down, there are (up to positive affine trans-

formation) two choices for u; call them u and −u. These are associated with two choices

for v (namely, v and −v) because the agreement and disagreement regions are pinned down.

Since (%A)A∈A = (
•

%A)A∈A, the same possibilities hold for
•

DM; that is, either (
•

v,
•

u) ≈ (v, u)

or (
•

v,
•

u) ≈ (−v,−u).

We now show that, given the priors µ and ν, only one of the pairs (v, u) or (−v,−u)

can be consistent with (%A)A∈A. Pick p1, p2, p3 ∈ ∆X such that u(p3) > u(p2) > u(p1) and

u(p2) − u(p1) > u(p3) − u(p2). We also require v(p3) 6= v(p1); this is easily achieved by

perturbing p1 and p3 along their respective indifference planes for u. Pick any E = [ω, ω′],

q ∈ ∆X, and h′ ∈ F , and let A = {f, g, h} where

f = (µω′p
1 + (1− µω′)q, µωp3 + (1− µω)q)Eh′

g = (µω′p
2 + (1− µω′)q, µωp2 + (1− µω)q)Eh′

h = (µω′p
3 + (1− µω′)q, µωp1 + (1− µω)q)Eh′

It is straightforward to verify that DM2’s choices from A (under µ and u) induces a symmetric

division of S. In particular, cs(A) = A if sω = 0 = sω′ ; c
s(A) = f if

sω′
sω

> u(p2)−u(p1)
u(p3)−u(p2)

;

cs(A) = h if
sω′
sω
< u(p3)−u(p2)

u(p2)−u(p1)
; and cs(A) = g if u(p3)−u(p2)

u(p2)−u(p1)
<

sω′
sω
< u(p2)−u(p1)

u(p3)−u(p2)
(these inequalities

assume sω > 0; at signal eω′ , DM2 chooses f). Since u(p2)− u(p1) > u(p3)− u(p2), there is

an interval of values for
sω′
sω

where one act in A is strictly optimal. In particular, ce(A) = g.

Consider an experiment σ = [s, t] where cs(A) = ct(A) = g, sω̂ = tω̂ = 1/2 for all ω̂ /∈ E,

and s 6= t. This can be done by taking s = 1
2
e+ δ, t = 1

2
e− δ for some δ ∈ RΩ where δω̂ = 0

for all ω̂ /∈ E. As long as ‖δ‖ is sufficiently small, we maintain cs(A) = ct(A) = g. Then

FA(σ) = g. Applying another such perturbation yields an experiment σ′ = [s′, t′] where

s′ = s+ δ′, t′ = t− δ′; for small ‖δ′‖, we once again have FA(σ′) = g, so that σ ∼A σ′.
Now consider behavior under (−v,−u). Under utility index −u, DM2 satisfies f �s g
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if and only if sωµω(−µω′u(p1)) + sω′µω′(−µωu(p3)) > sωµω(−µω′u(p2)) + sω′µω′(−µωu(p2));

equivalently, sω(u(p2)−u(p1)) > sω′(u(p3)−u(p2)). Similarly, g %s h if and only if sω(u(p3)−
u(p2)) ≥ sω′(u(p2)−u(p1)). Since u(p2)−u(p1) > u(p3)−u(p2), we get that g %s h⇒ f �s g.

Thus, for all s ∈ S, g /∈ cs(A). Similar algebra establishes that f %s h iff sω ≥ sω′ and h %s f

iff sω′ ≥ sω. Thus, under −u, only acts f and h are chosen by DM2 whenever sω̂ = 0 for all

ω̂ /∈ E (if s has support Ec, then cs(A) = A). With σ = [s, t] and σ′ = [s′, t′] = [s+ δ′, t− δ′]
as defined above, we may therefore assume that cs(A) = cs

′
(A) = h and ct(A) = ct

′
(A) = f .

The induced act for σ′ is given by

FA
ω̂ (σ′) =


µω′ [(sω + δ′ω)p1 + (tω − δ′ω)p3] + (1− µω′)q if ω̂ = ω

µω[(sω′ + δ′ω′)p
3 + (tω′ − δ′ω′)p1] + (1− µω)q if ω̂ = ω′

h′ω̂ if ω̂ /∈ E

For FA(σ), set δ′ = 0. Straightforward algebra establishes that under −v, we have σ ∼A σ′

if and only if

νω′µωδ
′
ω′ [v(p1)− v(p3)] = νωµω′δ

′
ω[v(p1)− v(p3)]

Since v(p1) 6= v(p3), this reduces to

νω′µωδ
′
ω′ = νωµω′δ

′
ω

We are free to perturb δ′ω and δ′ω′ as needed because the only constraint on δ′ is that ‖δ′‖ is

small. Thus, there exists σ′ such that σ 6∼A σ′ under (−v,−u).

Since we have shown that σ ∼A σ′ under (v, u) for all ‖δ′‖ small but σ 6∼A σ′ for some such

δ′ under (−v,−u), we conclude that only one pair—(v, u) or (−v,−u)—can be consistent

with (%A)A∈A. Since (%A)A∈A = (
•

%A)A∈A, the proof is complete.

D Proofs for Section 6

D.1 Proofs for Section 6.1

Proof of Proposition 3

Proof that (i) implies (ii). Suppose u ≈ v. Without loss of generality, assume that u = v.

First, suppose A is a menu such that σ∗ ∈ E∗(A), and let σ ∈ E∗(A). Then V A(σ) =∑
ω νωv(fσω ), where fσ = FA(σ). Let ω ∈ Ω. Since σ∗ ∈ E∗(A), there is a lottery pω such

that for all g ∈ ceω(A), gω = pω. Since DM2 has a Bayesian representation, it follows that
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u(pω) ≥ u(gω) for all g ∈ A. Thus, v(pω) ≥ v(gω) for all g ∈ A as well. It follows that

v(pω) ≥ v(fσω ) because fσω is in the convex hull of {gω : g ∈ A}. These statements hold for

all ω. Thus,

V A(σ∗) =
∑
ω

νωv(pω) ≥
∑
ω

νωv(fσω ) = V A(σ),

so that σ∗ %A σ, as desired.

Now suppose A is a menu and σ is an experiment where σ∗ /∈ E∗(A) or σ /∈ E∗(A).

Let ω ∈ Ω. Observe that if g, g′ ∈ ∆ceω(A) and h ∈ A, then u(gω) = u(g′ω) ≥ u(hω)

since DM2 has a Bayesian representation. Thus, vω := v(gω) = v(g′ω) ≥ v(hω) as well.

Since V
A

(σ) =
∑

ω νωv(fσω ) for some fσ ∈ FA(σ), and since fσω is in the convex hull of

{hω : h ∈ A}, it follows that

V
A

(σ∗) =
∑
ω

νωvω ≥
∑
ω

νωv(fσω ) = V
A

(σ),

so that σ∗ %A σ, as desired.

Clearly, (ii) implies (iii). Thus, to complete the proof, we only need to show that (iii)

implies (i).

Proof that (iii) implies (i). First, we establish the following claim: for all interior p, p′ ∈ ∆X,

u(p) > u(p′) implies v(p) ≥ v(p′).

To prove the claim, suppose u(p) > u(p′) and consider the bet A = {pEp′, p′Ep}, where

both E and its complement Ec are nonempty. In this menu, σ∗ results in lottery p with

certainty (at any signal eω ∈ σ∗, DM2 selects pEp′ if ω ∈ E, and p′Ep if ω /∈ E). Now

pick any σ ∈ E∗(A) where each s ∈ σ belongs to the interior of S (there are infinitely many

such σ because u(p) > u(p′) and E,Ec are nonempty). Since DM2 chooses between pEp′

and p′Ep, the induced act FA(σ) has the property that each FA
ω (σ) is a lottery over p and

p′ (a second-order lottery). Thus, using probability weights ν, DM1 treats σ as if it were a

second-order lottery over p and p′. The assumptions on σ ensure that positive probability

is assigned to both p and p′. Then, since σ∗ %A σ, it follows that v(p) ≥ v(p′). Thus, the

claim is proved.

From the claim, it follows that for all interior lotteries p, {p′ ∈ int∆X : u(p) > u(p′)} ⊆
{p′ ∈ int∆X : v(p) ≥ v(p′)}. Since u and v are continuous, we may take closures to obtain

{p′ ∈ ∆X : u(p) ≥ u(p′)} ⊆ {p′ ∈ ∆X : v(p) ≥ v(p′)}. Since u and v are linear, these lower

contour sets are half-spaces in ∆X, and p lies on the bounding hyperplane of each half-space.

So, the inclusion forces the bounding hyperplanes to have a common normal vector. Thus,

{p′ ∈ ∆X : u(p) ≥ u(p′)} = {p′ ∈ ∆X : v(p) ≥ v(p′)}. This holds for all interior p, and
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therefore u ≈ v.

Proof of Proposition 4

Proof that (i) implies (ii). Suppose ν = µ and let A = {pEq, qFp}. If u(p) = u(q), then

cs(A) = A for all signals s. Then, under the assumption of sender-preferred tie-breaking,

%A satisfies the Blackwell ordering.

If u(p) 6= u(q), suppose without loss of generality that u(p) > u(q). If v(p) = v(q), then

%A is trivially Blackwell monotone. For any signal s, let νs and µs denote the Bayesian

posteriors of ν and µ upon observing s, respectively. Notice that DM2 prefers pEq over pFq

at signal s if and only if µs(E) ≥ µs(F ). There are two cases.

Case 1: v(p) > v(q). Then DM1 prefers pEq over pFq at signal s if and only if νs(E) ≥
νs(F ). Since µ = ν, this means DM1’s preferences at s coincide with those of DM2. This

holds for all s. Therefore, for all σ,

V A(σ) =
∑
ω̂

νω̂
∑
s∈σ

sω̂v(f sω̂) s.t. f s ∈ argmax
f∈A

∑
ω̂

νsω̂v(fω̂)

In other words, V A(σ) can be written as the expected utility in decision problem A under

experiment σ for an expected-utility maximizer with prior ν, utility index v, and Bayesian

updating (that is, choices conditional on s are made to maximize expected utility under

Bayesian posterior νs and utility index v). It follows that %A satisfies the Blackwell ordering.

Case 2: v(p) < v(q). In this case, DM1’s preferences at s are exactly opposite those of

DM2. They agree only when µs(E) = µs(F ) (and, hence, νs(E) = νs(F )), in which case

they are both indifferent between pEq and qEp. Therefore, for all σ,

−V A(σ) =
∑
ω̂

νω̂
∑
s∈σ

sω̂v
′(f sω̂) s.t. f s ∈ argmax

f∈A

∑
ω̂

νsω̂v
′(fω̂) (20)

where v′ := −v. Thus, σ w σ′ implies −V A(σ) ≥ −V A(σ′); that is, σ w σ′ implies σ′ %A

σ.

Proof that (ii) implies (i). Suppose µ 6= ν and assume without loss of generality that µ(E) >

ν(E). Let A = {pEq, qEp} where u(p) > u(q). We will prove that %A is not Blackwell

monotone for the case v(p) > v(q); the case v(p) < v(q) is similar. This is sufficient because

linearity of u and v ensures that lotteries p, q can be found for which one of these two cases

holds.

Since DM1 and DM2 agree on the ranking of p and q, %A satisfies the Blackwell ordering

around σ∗. That is, for small garblings σ of σ∗, we have σ∗ %A σ. Thus, it will suffice to

74



find a pair of experiments σ, σ′ where σ w σ′ but σ′ �A σ.

First, note that upon observing signal s, DM2 prefers pEq over qEp if and only if∑
ω∈E sωµω ≥

∑
ω′∈Ec sω′µω′ , where Ec is the complement of E. A similar statement holds

for DM1: if he were allowed to choose from A after observing s, he would prefer pEq over

qEp if and only if
∑

ω∈E sωνω ≥
∑

ω′∈Ec sω′νω′ .

We will work with experiments of the form σ = [r s t]. Consider the following three

properties:

1.
∑

ω∈E rωµω <
∑

ω′∈Ec rω′µω′ and
∑

ω∈E rωνω <
∑

ω′∈Ec rω′νω′

2.
∑

ω∈E sωµω >
∑

ω′∈Ec sω′µω′ and
∑

ω∈E sωνω <
∑

ω′∈Ec sω′νω′

3.
∑

ω∈E tωµω >
∑

ω′∈Ec tω′µω′ and
∑

ω∈E tωνω >
∑

ω′∈Ec tω′νω′

Property 1 says that DM1 and DM2 both strictly prefer qEp at signal r, while property

3 says that they both strictly prefer pEq at signal t. Property 2 says that at signal s, DM2

strictly prefers pEq while DM1 strictly prefers qEp.

It is fairly simple to see that an experiment σ = [r s t] satisfying properties 1–3 exists.

Take s to be an interior signal satisfying property 2 (this can be done because µ(E) > ν(E)).

If necessary, replace s with λs for some λ ∈ (0, 1) so that both r := 1Ec0 − sEc0 and

t := 1E0 − sE0 are well-defined signals. Then r + s + t = e so that σ is a well-defined

experiment that satisfies all three properties. In particular, signal r reveals the true state to

be in Ec while signal t reveals the state to be in E, as desired.

Let σ̂ = [r̂ ŝ t̂] be an experiment satisfying properties 1–3, with r̂ in place of r, ŝ in

place of s, and t̂ in place of t. Let γ ∈ [0, 1] and define s := γŝ, t := t̂ + (1 − γ)ŝE0, and

r := r̂ + (1− γ)ŝEc0. Then

r + s+ t = r̂E[r̂ + (1− γ)ŝ] + γŝEγŝ+ [t̂+ (1− γ)ŝ]Et̂

= [r̂ + γŝ+ t̂+ (1− γ)ŝ]E[r̂ + (1− γ)ŝ+ γŝ+ t̂]

= r̂ + ŝ+ t̂

= e

so that r, s, t are well-defined signals and σ = [r s t] is a well-defined experiment.

Next, we show that σ satisfies properties 1–3. For property 1, observe that
∑

ω∈E rωµω =∑
ω∈E r̂ωµω, and that

∑
ω′∈Ec rω′µω′ =

∑
ω′∈Ec [r̂ω′ + (1− γ)ŝω′ ]µω′ ≥

∑
ω′∈Ec r̂ω′µω′ . Since r̂

satisfies property 1, this implies
∑

ω∈E rωµω =
∑

ω∈E r̂ωµω <
∑

ω′∈Ec r̂ω′µω′ ≤
∑

ω′∈Ec rω′µω′ ,

as desired. A similar argument holds with ν in place of µ. Thus, property 1 is satisfied.

Property 2 for s is clearly inherited from ŝ. For property 3, note that
∑

ω∈E tωµω =∑
ω∈E[t̂ω +(1−γ)ŝω]µω ≥

∑
ω∈E t̂ωµω and that

∑
ω′∈Ec tω′µω′ =

∑
ω′∈Ec t̂ω′µω′ . Then use the

fact that t̂ satisfies property 3 to get the result. Once again, the same argument holds with
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ν in place of µ to get the second statement of property 3. Thus, property 3 is satisfied.

We now construct a garbling σ′ of σ such that σ′ �A σ. Let σ′ = σM , where M is the

garbling matrix given by

M =

β 1− β 0

α 0 1− α
0 0 1


where α, β ∈ (0, 1). Thus, σ′ = [r′ s′ t′], where r′ = (1−β)r, s′ = αs+βr, and t′ = (1−α)s+t.

We will choose γ, α, and β such that σ′ satisfies properties 1,3, and 2’, where:

2’.
∑

ω∈E s
′
ωµω <

∑
ω′∈Ec s

′
ω′µω′ and

∑
ω∈E s

′
ωνω <

∑
ω′∈Ec s

′
ω′νω′

Thus, like r and t, signals r′ and t′ involve DM2 choosing qEp and pEq, respectively,

and DM1 agrees with these decisions. But s′ now involves DM2 choosing qEp (instead of

pEq, which signal s induces), and DM1 agrees with this choice. Thus, M transforms s from

a point of disagreement into a point of agreement, s′. This will provide a boost to DM1’s

ex-ante expected utility large enough to yield σ′ �A σ.

Since r′ = (1 − β)r and r satisfies property 1, so does r′. For property 3, the fact that∑
ω∈E sωµω >

∑
ω′∈Ec sω′µω′ and

∑
ω∈E tωµω >

∑
ω′∈Ec tω′µω′ , together with t′ = (1−α)s+t,

immediately implies that
∑

ω∈E t
′
ωµω >

∑
ω′∈Ec t

′
ω′µω′ . For the other claim of property 3,

we need to show that
∑

ω∈E t
′
ωνω >

∑
ω′∈Ec t

′
ω′νω′ . The left-hand side can be rewritten as∑

ω∈E[(1 − α)γŝω + t̂ω + (1 − γ)ŝω]νω; this is a continuous function of γ that converges to∑
ω∈E(t̂ω+ ŝω)νω as γ → 0. The right-hand side can be rewritten as

∑
ω′∈Ec [(1−α)γŝω′+ t̂ω′ ];

this is a continuous function of γ that converges to
∑

ω′∈Ec t̂ω′νω′ as γ → 0. Since t̂ satisfies

property 3, we get that
∑

ω∈E[t̂ω+ ŝω]νω ≥
∑

ω∈E t̂ωνω >
∑

ω′∈Ec t̂ω′νω′ . Thus, for sufficiently

small γ, we have
∑

ω∈E t
′
ωνω >

∑
ω′∈Ec t

′
ω′νω′ , as desired.

For property 2’, the fact that
∑

ω∈E sωνω <
∑

ω′∈Ec sω′νω′ and
∑

ω∈E rωνω <
∑

ω′∈Ec rω′νω′ ,

together with s′ = αs + βr, immediately implies that
∑

ω∈E s
′
ωνω <

∑
ω′∈Ec s

′
ω′νω′ . For

the other claim of property 2’, we need to show that
∑

ω∈E s
′
ωµω <

∑
ω′∈Ec s

′
ω′µω′ . The

left-hand side can be rewritten as
∑

ω∈E[αγŝω + βr̂ω]µω; this is a continuous function of

γ that converges to
∑

ω∈E βr̂ωµω as γ → 0. The right-hand side can be rewritten as∑
ω′∈Ec [αγŝω′ + β(r̂ω′ + (1 − γ)ŝω′)]µω′ ; this is a continuous function of γ that converges

to
∑

ω′∈Ec β(r̂ω′ + ŝω′)µω′ as γ → 0. Since r̂ satisfies property 1, we have
∑

ω∈E r̂ωµω <∑
ω′∈Ec r̂ω′µω′ ≤

∑
ω′∈Ec(r̂ω′ + ŝω′)µω′ , so that

∑
ω∈E βr̂ωµω <

∑
ω′∈Ec β(r̂ω′ + ŝω′)µω′ . Thus,

for small enough γ, we have
∑

ω∈E s
′
ωµω <

∑
ω′∈Ec s

′
ω′µω′ , as desired.

The above arguments show that for γ sufficiently close to zero (but still strictly positive),

σ satisfied properties 1–3 and σ′ := σM satisfies properties 1, 2’, and 3. This holds for any

choice of α, β ∈ (0, 1). For the remainder of the proof, fix such a γ.

It will suffice to show that V A(σ′) > V A(σ). Recall that cr(A) = qEp, cs(A) = pEq,
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ct(A) = pEq, cr
′
(A) = qEp, cs

′
(A) = qEp, and ct

′
(A) = pEq, and that r′ = (1 − β)r,

s′ = αs+ βr, and t′ = (1− α)s+ t. Therefore,

V A(σ) =
∑
ω∈E

νω[rωv(q) + sωv(p) + tωv(p)] +
∑
ω′∈Ec

νω′ [rω′v(p) + sω′v(q) + tω′v(q)]

=

[∑
ω∈E

νωrωv(q) +
∑
ω′∈Ec

νω′rω′v(p)

]
+

[∑
ω∈E

νωsωv(p) +
∑
ω′∈Ec

νω′sω′v(q)

]

+

[∑
ω∈E

νωtωv(p) +
∑
ω′∈Ec

νω′tω′v(q)

]

and

V A(σ′) =
∑
ω∈E

νω[r′ωv(q) + s′ωv(q) + t′ωv(p)] +
∑
ω′∈Ec

νω′ [r
′
ω′v(p) + s′ω′v(p) + t′ω′v(q)]

=

[∑
ω∈E

νωr
′
ωv(q) +

∑
ω′∈Ec

νω′r
′
ω′v(p)

]
+

[∑
ω∈E

νωs
′
ωv(q) +

∑
ω′∈Ec

νω′s
′
ω′v(p)

]

+

[∑
ω∈E

νωt
′
ωv(p) +

∑
ω′∈Ec

νω′t
′
ω′v(q)

]

= (1− β)

[∑
ω∈E

νωrωv(q) +
∑
ω′∈Ec

νω′rω′v(p)

]

+

[∑
ω∈E

νω(αsω + βrω)v(q) +
∑
ω′∈Ec

νω′(αsω′ + βrω′)v(p)

]

+

[∑
ω∈E

νω((1− α)sω + tω)v(p) +
∑
ω′∈Ec

νω′((1− α)sω′ + tω′)v(q)

]

=

[∑
ω∈E

νωrωv(q) +
∑
ω′∈Ec

νω′rω′v(p)

]
+ α

[∑
ω∈E

νωsωv(q) +
∑
ω′∈Ec

νω′sω′v(p)

]

+ (1− α)

[∑
ω∈E

νωsωv(p) +
∑
ω′∈Ec

νω′sω′v(q)

]
+

[∑
ω∈E

νωtωv(p) +
∑
ω′∈Ec

νω′tω′v(q)

]

Thus,

V A(σ′)− V A(σ) = α

[∑
ω∈E

νωsωv(q) +
∑
ω′∈Ec

νω′sω′v(p)

]
− α

[∑
ω∈E

νωsωv(p) +
∑
ω′∈Ec

νω′sω′v(q)

]
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It follows that V A(σ′) > V A(σ) if and only if∑
ω∈E

νωsωv(q) +
∑
ω′∈Ec

νω′sω′v(p) >
∑
ω∈E

νωsωv(p) +
∑
ω′∈Ec

νω′sω′v(q)

⇔
∑
ω′∈Ec

sω′νω′ [v(p)− v(q)] >
∑
ω∈E

sωνω[v(p)− v(q)]

⇔
∑
ω′∈Ec

sω′νω′ >
∑
ω∈E

sωνω

The final inequality holds because s satisfies property 2. Thus, V A(σ′) > V A(σ), as desired.

D.2 Proofs for Section 6.2

Proof of Proposition 6

First, observe that if A is a (p, q)-bet and σ∗ �A σ, then DM1 and DM2 agree on the ranking

of p and q. To see this, note that since σ∗ �A σ, DM1 cannot be indifferent between p and q.

So, assume without loss of generality that v(p) > v(q). Suppose toward a contradiction that

u(q) > u(p). It follows that V A(σ∗) = v(q), which is the lowest attainable payoff for DM1 in

a (p, q)-bet. Hence, there can be no experiment such that σ∗ �A σ. Thus, we conclude that

u(p) ≥ u(q).

Proof that (i) implies (ii). Suppose A is a (p, q)-bet and that σ∗ �A σ for some σ. Assume

without loss of generality that v(p) > v(q). Then, by the argument above, we have u(p) ≥
u(q). By assumption,

•

v(p) >
•

v(q); thus, by (i), we have
•

u(p) ≥ •

u(q) as well. It follows that
•

V A(σ∗) =
•

v(p), which is the highest attainable payoff for
•

DM1 in a (p, q)-bet. Next, observe

that
•

V A(σ) =
•

v(p) if and only if σ is equivalent to σ∗ (that is, every s ∈ σ is a scalar multiple

of some t ∈ σ∗). But this would imply that σ∗ ∼A σ, a contradiction. Thus,
•

V A(σ) 6= •

v(p),

and therefore
•

V A(σ) <
•

v(p) =
•

V A(σ∗). That is, σ∗
•

�A σ, as desired.

Proof that (ii) implies (i). Suppose DM1 and DM2 agree on the ranking of p and q; without

loss of generality, v(p) > v(q) and u(p) ≥ u(q). Since
•

v(p) >
•

v(q) (by assumption), it will

suffice to show that
•

u(p) ≥ •

u(q). So, let A be a (p, q)-bet. Since v(p) > v(q) and u(p) ≥ u(q),

there exists σ such that σ∗ �A σ (for example, σ = e). By (ii), we have σ∗
•

�A σ. Since
•

v(p) >
•

v(q), this forces
•

u(p) ≥ •

u(q) by the argument above.
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Proof of Proposition 7

First, note that if A is a non-degenerate (p, q)-bet, then v(p) 6= v(q). This implies that

either σ∗ �A e or e �A σ∗. To see this, suppose without loss of generality that v(p) > v(q).

Then, either u(p) ≥ u(q) or u(q) > u(p). If u(p) ≥ u(q), then V A(σ∗) = v(p) and V A(e) =

αv(p) + (1− α)v(q) for some α ∈ (0, 1); thus, V A(σ∗) > V A(e). If instead u(q) > u(p), then

V A(σ∗) = v(q) and V A(e) = α′v(p)+(1−α′)v(q) for some α′ ∈ (0, 1); thus, V A(e) > V A(σ∗).

Hence, either σ∗ �A e or e �A σ∗ whenever A is a non-degenerate bet.

A signal s belongs to the EF -agreement region for DM if, for all non-degenerate EF -bets

A, the sets {
f ∈ A :

∑
ω

v(fω)νsω ≥
∑
ω

v(gω)νsω ∀g ∈ A

}
and {

f ∈ A :
∑
ω

u(fω)µsω ≥
∑
ω

u(gω)µsω ∀g ∈ A

}
are singletons and have nonempty intersection (that is, there exists a unique act f ∈ A

that maximizes expected utility under both (νs, v) and (µs, u)). Otherwise, s is in the EF -

disagreement region for DM. A similar definition holds for the
•

EF -agreement/disagreement

regions of
•

DM.

Lemma 34. Suppose A is a non-degenerate EF -bet and that σ 6∼A e. If every s ∈ σ belongs

to the agreement region for DM, then σ is EF -extreme. Conversely, if σ is EF -extreme,

then every s ∈ σ belongs to the EF -agreement region.

Proof. Let A = {pEq, pFq} be non-degenerate. We will prove the lemma for the case

σ∗ �A e, so that DM1 and DM2 agree on the ranking of p and q (the case e �A σ∗ is

symmetric). So, suppose without loss of generality that v(p) > v(q) and u(p) ≥ u(q).

The first statement holds by the Blackwell information ordering. For the converse, sup-

pose there exists s ∈ σ such that s is in the disagreement region. If all signals of σ belong

to the disagreement region, then %A (locally) reverses the Blackwell ordering (and it is not

difficult to construct a strict reversal), contradicting extremeness of σ.

Next, suppose some (but not all) signals of σ belong to the disagreement region. We

will find signals s, t ∈ σ such that s belongs to the disagreement region, t belongs to the

agreement region, and cs(A) 6= ct(A). Pick some t′ ∈ σ that belongs to the agreement region.

Since σ 6∼A e, there is at least one s′ ∈ σ such that cs
′
(A) 6= ct

′
(A). If every such s′ is in

the disagreement region, take t = t′ and s = s′ for such an s′. Otherwise, every s′ ∈ σ

such that cs
′
(A) 6= ct

′
(A) is in the agreement region. Hence, the set of all s′′ ∈ σ such that

cs
′′
(A) = ct

′
(A) intersects the disagreement region (recall that σ contains at least one signal
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in the disagreement region). So, there exists s ∈ σ such that cs(A) = ct
′
(A) and s belongs to

the disagreement region. Then take t to be any s′ ∈ σ such that cs
′
(A) 6= ct

′
(A); our choice

of s and t satisfies all requirements.

We will now show that %A violates the Blackwell information ordering. Without loss of

generality, assume cs(A) = pEq and ct(A) = pFq. Since s is in the disagreement region, this

implies
∑

ω∈F νωsω−
∑

ω∈E νωsω > 0 (that is, DM1 strictly prefers pFq at signal s). We may

write σ = [r1, . . . , rK , t, s]. Consider the garbling matrix M given by

M =

 IK 0

0
1 0

1− α α


where IK denotes the K × K identity matrix. Then σ′ := σM = [r1, . . . , r

K , t′, s′] where

t′ = t + (1 − α)s and s′ = αs. Clearly, cs
′
(A) = cs(A) and, for small enough α ∈ (0, 1),

ct
′
(A) = ct(A). Thus, for α ∈ (0, 1) sufficiently small,

V A(σ′)− V A(σ)

1− α
= −

[∑
ω∈E

νωsωv(p) +
∑
ω∈Ec

νωsωv(q)

]
+

[∑
ω∈F

νωsωv(p) +
∑
ω∈F c

νωsωv(q)

]

= v(p)

[∑
ω∈F

νωsω −
∑
ω∈E

νωsω

]
− v(q)

[∑
ω∈Ec

νωsω −
∑
ω∈F c

νωsω

]

Dividing both sides by
∑

ω∈Ω νωsω, it follows that V A(σ′)− V A(σ) > 0 if and only if

v(p) [P (F |s)− P (E|s)]− v(q) [(1− P (E|s))− (1− P (F |s))] > 0

where P (E|s) and P (F |s) are conditional probabilities of events E and F , respectively, given

prior ν and signal s. Thus, V A(σ′)− V A(σ) > 0 if and only if

(v(p)− v(q)) [P (F |s)− P (E|s)] > 0

Since v(p) > v(q), this is equivalent to
∑

ω∈F νωsω −
∑

ω∈E νωsω > 0. As demonstrated

above, this condition is satisfied because s is in the disagreement region and cs(A) = pEq.

Thus, V A(σ′) − V A(σ) > 0 and therefore σ′ �A σ. This violates the Blackwell information

ordering because σ′ is a garbling of σ.

Proof that (i) ⇒ (ii). Suppose σ is EF -extreme. By Lemma 34, every s ∈ σ is in the

agreement region for DM1. By hypothesis, then, s is in the agreement region for
•

DM. Thus,

by Lemma 34, σ is
•

EF -extreme.
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Proof that (ii) ⇒ (i). Suppose s is in the agreement region (for some E,F ) for DM. Let σ

be the experiment consisting of s and, for each ω such that sω < 1, a signal (column) t such

that tω = 1 − sω and tω′ = 0 for all ω′ 6= ω. Then each s′ ∈ σ is in the agreement region

for DM (the additional signals t yield posteriors assigning probability 1 to a single state), so

that by Lemma 34, σ is EF -extreme. By hypothesis, then, σ is also
•

EF -extreme. Therefore,

by Lemma 34, s is in the agreement region for
•

DM.

Proof that (ii) ⇔ (iii). Clearly, (iii) implies (ii). To see that (ii) implies (iii), let A =

{pEq, pFq} be non-degenerate and suppose σ ∈ E∗(A) ∩
•

E∗(A) is EF -extreme and that

σ w σ′. Suppose σ∗
•

�A e, so that
•

DM1 and
•

DM2 agree on the ranking of p and q. Since

every signal of σ belongs to the
•

EF -agreement region, we have σ
•

%A σ′ (by the Blackwell

ordering) even if every signal of σ′ belongs to the agreement region. If one or more signals

of σ′ are in the disagreement region, then
•

V A(σ′) is even lower (that is,
•

V A(σ′) decreases as

the set of signals of σ′ in the disagreement region grows). Thus, in all cases, σ
•

%A σ′.
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